skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-gradient permanent magnet apparatus and its use in particle collection

Abstract

A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.

Inventors:
; ;
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1261633
Patent Number(s):
9,387,486
Application Number:
14/867,768
Assignee:
UT-BATTELLE, LLC (Oak Ridge, TN) ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Sep 28
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 47 OTHER INSTRUMENTATION

Citation Formats

Cheng, Mengdawn, Ludtka, Gerard Michael, and Avens, Larry R. High-gradient permanent magnet apparatus and its use in particle collection. United States: N. p., 2016. Web.
Cheng, Mengdawn, Ludtka, Gerard Michael, & Avens, Larry R. High-gradient permanent magnet apparatus and its use in particle collection. United States.
Cheng, Mengdawn, Ludtka, Gerard Michael, and Avens, Larry R. Tue . "High-gradient permanent magnet apparatus and its use in particle collection". United States. doi:. https://www.osti.gov/servlets/purl/1261633.
@article{osti_1261633,
title = {High-gradient permanent magnet apparatus and its use in particle collection},
author = {Cheng, Mengdawn and Ludtka, Gerard Michael and Avens, Larry R.},
abstractNote = {A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jul 12 00:00:00 EDT 2016},
month = {Tue Jul 12 00:00:00 EDT 2016}
}

Patent:

Save / Share:
  • A non-scaling fixed field alternating gradient accelerator includes a racetrack shape including a first straight section connected to a first arc section, the first arc section connected to a second straight section, the second straight section connected to a second arc section, and the second arc section connected to the first straight section; an matching cells configured to match particle orbits between the first straight section, the first arc section, the second straight section, and the second arc section. The accelerator includes the matching cells and an associated matching procedure enabling the particle orbits at varying energies between an arcmore » section and a straight section in the racetrack shape.« less
  • A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle. 23 figs.
  • A sensorless method and apparatus for providing commutation timing signals for a brushless permanent magnet motor extracts the third harmonic back-emf of a three-phase stator winding and independently cyclically integrates the positive and negative half-cycles thereof and compares the results to a reference level associated with a desired commutation angle.
  • A permanent magnet assembly (22) for assembly in large permanent magnet (PM) motors and generators includes a two-piece carrier (23, 24) that can be slid into a slot (13) in the rotor (10) and then secured in place using a set screw (37). The invention also provides an auxiliary carrier device (50) with guide rails (51) that line up with the teeth (12) of the rotor, so that a permanent magnet assembly (22) can be pushed first into a slot (13), and then down the slot (13) to its proper location. An auxiliary tool (50) is provided to move themore » permanent magnet assembly (22) into position in the slot (13) before it is secured in place. Methods of assembling and disassembling the magnet assemblies (22) in the rotor (10) are also disclosed.« less
  • A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.