skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The linac coherent light source single particle imaging road map

Authors:
 [1];  [2];  [3];  [3];  [3];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10];  [11];  [3];  [12];  [3];  [13];  [14];  [6] more »;  [15];  [16];  [17];  [18];  [19];  [20];  [21];  [22];  [23];  [24] « less
  1. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; European XFEL GmbH, Albert-Einstein-Ring 19, Hamburg 22671, Germany
  2. Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607 Hamburg, Germany
  3. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
  4. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA; Department of Physics, Stanford University, Stanford, California 94305, USA
  5. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Department of Physics, Stanford University, Stanford, California 94305, USA
  6. Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA
  7. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China; ShanghaiTech University, 99 Haike Road, Shanghai 201210, China
  8. Department of Biochemistry Molecular Biology, Monash University, Clayton 3800, Australia; ARC Centre of Excellence for Advanced Molecular Imaging, Clayton 3800, Australia
  9. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Department of Physics, Cornell University, Ithaca, New York 14853, USA
  10. PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
  11. Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden; European XFEL GmbH, Albert-Einstein-Ring 19, Hamburg 22671, Germany
  12. Lawrence Livermore National Laboratory, Livermore, California 94550, USA
  13. BioXFEL Center and Department of Structural Biology, University at Buffalo, SUNY, 700 Ellicott Street, Buffalo, New York 14203, USA; Hauptman-Woodward Institute, 700 Ellicott Street, Buffalo, New York 14203, USA
  14. Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden; Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720, USA
  15. Department of Physics, University of Wisconsin Milwaukee, 1900 E. Kenwood Blvd, Milwaukee, Wisconsin 53211, USA
  16. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, California 90095, USA
  17. Center for Free-Electron Laser Science, DESY, Notkestr. 85, 22607 Hamburg, Germany; Department of Physics, University of Hamburg, Jungiusstr. 9, 20355 Hamburg, Germany
  18. Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
  19. Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
  20. Department of Physics, Arizona State University, Rural Rd, Tempe, Arizona 85287, USA
  21. Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe shosse 31, 115409 Moscow, Russia
  22. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; School of Medicine, Stanford University, 299 Campus Drive, Stanford, California 94305, USA
  23. School of Medicine, Stanford University, 299 Campus Drive, Stanford, California 94305, USA
  24. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA; Brookhaven National Laboratory, P.O. BOX 5000, Upton, New York 11973, USA
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1261129
DOE Contract Number:
STC 1231306; AC02-76SF00515; FG02-09ER16114; AC52-07NA27344; 05K2012
Resource Type:
Journal Article
Resource Relation:
Journal Name: Structural Dynamics; Journal Volume: 2; Journal Issue: 4
Country of Publication:
United States
Language:
English

Citation Formats

Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., Drell, P., Doniach, S., Downing, K. H., Earnest, T., Elmlund, H., Elser, V., Gühr, M., Hajdu, J., Hastings, J., Hau-Riege, S. P., Huang, Z., Lattman, E. E., Maia, F. R. N. C., Marchesini, S., Ourmazd, A., Pellegrini, C., Santra, R., Schlichting, I., Schroer, C., Spence, J. C. H., Vartanyants, I. A., Wakatsuki, S., Weis, W. I., and Williams, G. J. The linac coherent light source single particle imaging road map. United States: N. p., 2015. Web. doi:10.1063/1.4918726.
Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., Drell, P., Doniach, S., Downing, K. H., Earnest, T., Elmlund, H., Elser, V., Gühr, M., Hajdu, J., Hastings, J., Hau-Riege, S. P., Huang, Z., Lattman, E. E., Maia, F. R. N. C., Marchesini, S., Ourmazd, A., Pellegrini, C., Santra, R., Schlichting, I., Schroer, C., Spence, J. C. H., Vartanyants, I. A., Wakatsuki, S., Weis, W. I., & Williams, G. J. The linac coherent light source single particle imaging road map. United States. doi:10.1063/1.4918726.
Aquila, A., Barty, A., Bostedt, C., Boutet, S., Carini, G., dePonte, D., Drell, P., Doniach, S., Downing, K. H., Earnest, T., Elmlund, H., Elser, V., Gühr, M., Hajdu, J., Hastings, J., Hau-Riege, S. P., Huang, Z., Lattman, E. E., Maia, F. R. N. C., Marchesini, S., Ourmazd, A., Pellegrini, C., Santra, R., Schlichting, I., Schroer, C., Spence, J. C. H., Vartanyants, I. A., Wakatsuki, S., Weis, W. I., and Williams, G. J. Wed . "The linac coherent light source single particle imaging road map". United States. doi:10.1063/1.4918726.
@article{osti_1261129,
title = {The linac coherent light source single particle imaging road map},
author = {Aquila, A. and Barty, A. and Bostedt, C. and Boutet, S. and Carini, G. and dePonte, D. and Drell, P. and Doniach, S. and Downing, K. H. and Earnest, T. and Elmlund, H. and Elser, V. and Gühr, M. and Hajdu, J. and Hastings, J. and Hau-Riege, S. P. and Huang, Z. and Lattman, E. E. and Maia, F. R. N. C. and Marchesini, S. and Ourmazd, A. and Pellegrini, C. and Santra, R. and Schlichting, I. and Schroer, C. and Spence, J. C. H. and Vartanyants, I. A. and Wakatsuki, S. and Weis, W. I. and Williams, G. J.},
abstractNote = {},
doi = {10.1063/1.4918726},
journal = {Structural Dynamics},
number = 4,
volume = 2,
place = {United States},
year = {Wed Jul 01 00:00:00 EDT 2015},
month = {Wed Jul 01 00:00:00 EDT 2015}
}
  • Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electronmore » laser sources.« less
  • Cited by 44
  • The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexiblemore » optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.« less
  • The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.
  • Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less