skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanism of CO 2 Hydrogenation on Pd/Al 2 O 3 Catalysts: Kinetics and Transient DRIFTS-MS Studies

Journal Article · · ACS Catalysis

The hydrogenation of CO2 was investigated over a wide range of reaction conditions, using two Pd/γ-Al2O3 catalysts with different Pd loadings (5% and 0.5%) and dispersions (~11% and ~100%, respectively). Turnover rates for CO and CH4 formation were both higher over 5% Pd/Al2O3 with a larger average Pd particle size than those over 0.5% Pd/Al2O3 with a smaller average particle size. The selectivity to methane (22-40%) on 5% Pd/Al2O3 was higher by a factor of 2-3 than that on 0.5% Pd/Al2O3. The drastically different rate expressions and apparent energies of activation for CO and CH4 formation lead us to conclude that reverse water gas shift and CO2 methanation do not share the same rate-limiting step on Pd, and that the two pathways are probably catalyzed at different surface sites. Measured reaction orders in CO2 and H2 pressures were similar over the two catalysts, suggesting that the reaction mechanism for each pathway does not change with particle size. In accordance, the DRIFTS results reveal that the prevalent surface species and their evolution patterns are comparable on the two catalysts during transient and steady-state experiments, switching feed gases among CO2, H2 and CO2+H2. The DRIFTS and MS results also demonstrate that no direct dissociation of CO2 takes place over the two catalysts, and that CO2 has to first react with surface hydroxyls on the oxide support. The thus-formed bicarbonates react with dissociatively adsorbed hydrogen on Pd particles to produce adsorbed formate species (bifunctional catalyst: CO2 activation on the oxide support, and H2 dissociation on the metal particles). Formates near the Pd particles (most likely at the metal/oxide interface) can react rapidly with adsorbed H to produce CO, which then adsorbs on the metallic Pd particles. Two types of Pd sites are identified: one has a weak interaction with CO, which easily desorbs into gas phase at reaction temperatures, while the other interacts more strongly with CO, which is mainly in multi-bound forms and remains stable in He flow at high temperatures, but is reactive towards adsorbed H atoms on Pd leading eventually to CH4 formation. 5% Pd/Al2O3 contains a larger fraction of terrace sites favorable for forming these more stable CO species than 0.5% Pd/Al2O3. Consequently, we propose that the difference in the formation rate and selectivity to CH4 on different Pd particle sizes stems from the different concentrations of the reactive intermediate for the methanation pathway on the Pd surface. JS gratefully acknowledges the financial support of this work by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1260875
Report Number(s):
PNNL-SA-111586; KC0302010
Journal Information:
ACS Catalysis, Vol. 5, Issue 11; ISSN 2155-5435
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English