skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels

Abstract

A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.

Inventors:
; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1260218
Patent Number(s):
9,384,870
Application Number:
14/179,271
Assignee:
Lawrence Livermore National Security, LLC (Livermore, CA) LLNL
DOE Contract Number:
AC52-07NA27344
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Feb 12
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Worsley, Marcus A., Baumann, Theodore F., and Satcher, Jr, Joe H. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels. United States: N. p., 2016. Web.
Worsley, Marcus A., Baumann, Theodore F., & Satcher, Jr, Joe H. Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels. United States.
Worsley, Marcus A., Baumann, Theodore F., and Satcher, Jr, Joe H. 2016. "Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels". United States. doi:. https://www.osti.gov/servlets/purl/1260218.
@article{osti_1260218,
title = {Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels},
author = {Worsley, Marcus A. and Baumann, Theodore F. and Satcher, Jr, Joe H.},
abstractNote = {A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbon nanotubes and 5 to 95% carbon binder.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 7
}

Patent:

Save / Share:
  • A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbonmore » nanotubes and 5 to 95% carbon binder.« less
  • Disclosed here is a device comprising a porous carbon aerogel or composite thereof as an energy storage material, catalyst support, sensor or adsorbent, wherein the porous carbon aerogel comprises a network of interconnected struts comprising carbon nanotube bundles covalently crosslinked by graphitic carbon nanoparticles, wherein the carbon nanotubes account for 5 to 95 wt. % of the aerogel and the graphitic carbon nanoparticles account for 5 to 95 wt. % of the aerogel, and wherein the aerogel has an electrical conductivity of at least 10 S/m and is capable of withstanding strains of more than 10% before fracture.
  • Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.
  • Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.