skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conjunctive management of surface and groundwater resources under projected future climate change scenarios

Abstract

Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.

Authors:
 [1];  [1];  [2];  [2];  [2];  [2]
  1. Louisiana State Univ., Baton Rouge, LA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE
OSTI Identifier:
1260085
Grant/Contract Number:
AC05-00OR22725; G11AP20082; LEQSF(2012‐15)‐RD‐A‐03
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Hydrology
Additional Journal Information:
Journal Volume: 540; Journal Issue: C; Journal ID: ISSN 0022-1694
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Conjunctive use; Multi-reservoir system; Groundwater; Climate Change; Uncertainty; Fractional programming

Citation Formats

Mani, Amir, Tsai, Frank T. -C., Kao, Shih-Chieh, Naz, Bibi S., Ashfaq, Moetasim, and Rastogi, Deeksha. Conjunctive management of surface and groundwater resources under projected future climate change scenarios. United States: N. p., 2016. Web. doi:10.1016/j.jhydrol.2016.06.021.
Mani, Amir, Tsai, Frank T. -C., Kao, Shih-Chieh, Naz, Bibi S., Ashfaq, Moetasim, & Rastogi, Deeksha. Conjunctive management of surface and groundwater resources under projected future climate change scenarios. United States. doi:10.1016/j.jhydrol.2016.06.021.
Mani, Amir, Tsai, Frank T. -C., Kao, Shih-Chieh, Naz, Bibi S., Ashfaq, Moetasim, and Rastogi, Deeksha. 2016. "Conjunctive management of surface and groundwater resources under projected future climate change scenarios". United States. doi:10.1016/j.jhydrol.2016.06.021. https://www.osti.gov/servlets/purl/1260085.
@article{osti_1260085,
title = {Conjunctive management of surface and groundwater resources under projected future climate change scenarios},
author = {Mani, Amir and Tsai, Frank T. -C. and Kao, Shih-Chieh and Naz, Bibi S. and Ashfaq, Moetasim and Rastogi, Deeksha},
abstractNote = {Our study introduces a mixed integer linear fractional programming (MILFP) method to optimize conjunctive use of future surface water and groundwater resources under projected climate change scenarios. The conjunctive management model maximizes the ratio of groundwater usage to reservoir water usage. Future inflows to the reservoirs were estimated from the future runoffs projected through hydroclimate modeling considering the Variable Infiltration Capacity model, and 11 sets of downscaled Coupled Model Intercomparison Project phase 5 global climate model projections. Bayesian model averaging was adopted to quantify uncertainty in future runoff projections and reservoir inflow projections due to uncertain future climate projections. Optimized conjunctive management solutions were investigated for a water supply network in northern Louisiana which includes the Sparta aquifer. Runoff projections under climate change scenarios indicate that runoff will likely decrease in winter and increase in other seasons. Ultimately, results from the developed conjunctive management model with MILFP indicate that the future reservoir water, even at 2.5% low inflow cumulative probability level, could counterbalance groundwater pumping reduction to satisfy demands while improving the Sparta aquifer through conditional groundwater head constraint.},
doi = {10.1016/j.jhydrol.2016.06.021},
journal = {Journal of Hydrology},
number = C,
volume = 540,
place = {United States},
year = 2016,
month = 6
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101–2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmosphericmore » version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5° C relative to 1850–1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 °C threshold at the end of the 21st century. For RCP8.5, the range is 3.5–4.5° C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO₂, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the E2-R climate model produces a complete shutdown of deep water formation in the North Atlantic.« less
  • In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumpingmore » scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change impact assessment.« less
    Cited by 7
  • In this paper, the effects of irrigation on global surface water (SW) and groundwater (GW) resources are investigated by performing simulations using Community Land Model 4.0 (CLM4) at 0.5-degree resolution driven by downscaled/bias-corrected historical simulations and future projections from five General Circulation Models (GCMs) for 1950-2099. For each climate scenario, three sets of numerical experiments were configured: (1) a control experiment (CTRL) in which all crops are assumed to be rainfed; (2) an irrigation experiment (IRRIG) in which the irrigation module using only SW for irrigation is activated; and (3) a groundwater pumping experiment (PUMP) in which a groundwater pumpingmore » scheme coupled with the irrigation module is activated for conjunctive use of SW and GW for irrigation. The parameters associated with irrigation and groundwater pumping are calibrated based on a global inventory of census-based SW and GW use compiled by the Food and Agricultural Organization (FAO). Our results suggest that irrigation could lead to two major opposing effects: SW depletion/GW accumulation in regions with irrigation primarily fed by SW, and SW accumulation/GW depletion in regions with irrigation fed primarily by GW. Furthermore, irrigation depending primarily on SW tends to have larger impacts on low-flow than high-flow conditions, suggesting the potential to increase vulnerability to drought. By the end of the 21st century (2070-2099), climate change significantly increases (relative to 1971-2000) irrigation water demand across the world. Combined with the increased temporal-spatial variability of water supply, this may lead to severe issues of local water scarcity for irrigation. Regionally, irrigation has the potential to aggravate/alleviate climate-induced changes of SW/GW although such effects are negligible when averaged globally. Our results emphasize the importance of accounting for irrigation effects and irrigation sources in regional climate change impact assessment.« less
  • Research, analysis and commnetary since the release of the Special Report on Emissions Scenarios has suggested a number of areas, e.g. rates of economic growth, downscaling and scenario likelihood, where additional research would make the next set of scenarios of greater use and increased credibility. This essary reviews the work on the areas mentioned above and makes suggestions about possible ways to improve the next set of climate scenarios, to be developed by the research community without a specific IPCC terms of reference to guide the work.
  • The San Joaquin-Tulare Conjunctive Use Model (SANTUCM) was developed to evaluate possible long-term scenarios for long term management of drainage and drainage related problems in the western San Joaquin Valley of California. The unique aspect of the conjunctive use model is its coupling of a surface water delivery operations model with a regional groundwater model. A salinity model has been added to utilize surface water model output and allow assessment of compliance with State Water Resources Control Board water quality objectives for the San Joaquin River. The results of scenario runs, performed to data, using the SANTUCM model show tablemore » lowering and consequent drainage reduction can be achieved through a combination of source control, land retirement and regional groundwater pumping. The model also shows that water transfers within the existing distribution system are technically feasible and might allow additional releases to be made from Friant Dam for water quality maintenance in the San Joaquin River. However, upstream of Mendota Pool, considerable stream losses to the aquifer are anticipated, amounting to as much as 70% of in-stream flow.« less