skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation

Abstract

In this work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of the system, increasing proportionally to μ2/3. The precise form of the relevant formula, obtained through our asymptotic analysis, provides the most unstable mode as a function of the atomic density and the trap strength. We show how these unstable modes typically nucleate a large number of vortices in the periphery of the atomic cloud. However, through a pattern selection mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex configurations with far fewer vortices than the original unstable mode. We conclude that these results may be of relevance to the experimentally tractable realm of finite temperature atomic condensates.

Authors:
 [1];  [2];  [3]
  1. San Diego State Univ., San Diego, CA (United States)
  2. Univ. of Massachusetts, Amherst, MA (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Dalhousie Univ., Halifax, Nova Scotia (Canada)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1259962
Alternate Identifier(s):
OSTI ID: 1359740
Report Number(s):
LA-UR-14-29088
Journal ID: ISSN 0167-2789; PII: S0167278915002596
Grant/Contract Number:  
DMS-1312856; IRSES-605096; FA9550-12-10332; 2010239; RGPIN-33798; RGPAS/461907; AC52-06NA25396
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physica. D, Nonlinear Phenomena
Additional Journal Information:
Journal Volume: 317; Journal Issue: C; Journal ID: ISSN 0167-2789
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; 97 MATHEMATICS AND COMPUTING; Vortex nucleation; nonlinear Schrodinger equation; Gross-Pitaevskii equation; Bose-Einstein condensates

Citation Formats

Carretero-González, R., Kevrekidis, P. G., and Kolokolnikov, T. Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation. United States: N. p., 2016. Web. doi:10.1016/j.physd.2015.11.009.
Carretero-González, R., Kevrekidis, P. G., & Kolokolnikov, T. Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation. United States. https://doi.org/10.1016/j.physd.2015.11.009
Carretero-González, R., Kevrekidis, P. G., and Kolokolnikov, T. 2016. "Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation". United States. https://doi.org/10.1016/j.physd.2015.11.009. https://www.osti.gov/servlets/purl/1259962.
@article{osti_1259962,
title = {Vortex nucleation in a dissipative variant of the nonlinear Schrödinger equation under rotation},
author = {Carretero-González, R. and Kevrekidis, P. G. and Kolokolnikov, T.},
abstractNote = {In this work, we motivate and explore the dynamics of a dissipative variant of the nonlinear Schrödinger equation under the impact of external rotation. As in the well established Hamiltonian case, the rotation gives rise to the formation of vortices. We show, however, that the most unstable mode leading to this instability scales with an appropriate power of the chemical potential μ of the system, increasing proportionally to μ2/3. The precise form of the relevant formula, obtained through our asymptotic analysis, provides the most unstable mode as a function of the atomic density and the trap strength. We show how these unstable modes typically nucleate a large number of vortices in the periphery of the atomic cloud. However, through a pattern selection mechanism, prompted by symmetry-breaking, only few isolated vortices are pulled in sequentially from the periphery towards the bulk of the cloud resulting in highly symmetric stable vortex configurations with far fewer vortices than the original unstable mode. We conclude that these results may be of relevance to the experimentally tractable realm of finite temperature atomic condensates.},
doi = {10.1016/j.physd.2015.11.009},
url = {https://www.osti.gov/biblio/1259962}, journal = {Physica. D, Nonlinear Phenomena},
issn = {0167-2789},
number = C,
volume = 317,
place = {United States},
year = {Tue Mar 01 00:00:00 EST 2016},
month = {Tue Mar 01 00:00:00 EST 2016}
}

Journal Article:

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share: