skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stacked white OLED having separate red, green and blue sub-elements

Abstract

The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

Inventors:
; ;
Publication Date:
Research Org.:
The Regents of the University of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1259657
Patent Number(s):
9,379,346
Application Number:
14/746,571
Assignee:
The Regents of the University of Michigan (Ann Arbor, MI) CHO
DOE Contract Number:
FG02-07ER84809
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Jun 22
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Forrest, Stephen, Qi, Xiangfei, and Slootsky, Michael. Stacked white OLED having separate red, green and blue sub-elements. United States: N. p., 2016. Web.
Forrest, Stephen, Qi, Xiangfei, & Slootsky, Michael. Stacked white OLED having separate red, green and blue sub-elements. United States.
Forrest, Stephen, Qi, Xiangfei, and Slootsky, Michael. Tue . "Stacked white OLED having separate red, green and blue sub-elements". United States. doi:. https://www.osti.gov/servlets/purl/1259657.
@article{osti_1259657,
title = {Stacked white OLED having separate red, green and blue sub-elements},
author = {Forrest, Stephen and Qi, Xiangfei and Slootsky, Michael},
abstractNote = {The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jun 28 00:00:00 EDT 2016},
month = {Tue Jun 28 00:00:00 EDT 2016}
}

Patent:

Save / Share:
  • The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.
  • The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.
  • Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs ismore » demonstrated.« less
  • A laser is disclosed for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr{sup 3+} ions and Yb{sup 3+} ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output. 11 figs.
  • A laser for outputting visible light at the wavelengths of blue, green, orange and red light. This is accomplished through the doping of a substrate, such as an optical fiber or waveguide, with Pr.sup.3+ ions and Yb.sup.3+ ions. A light pump such as a diode laser is used to excite these ions into energy states which will produce lasing at the desired wavelengths. Tuning elements such as prisms and gratings can be employed to select desired wavelengths for output.