skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC ESI-MS/MS

Abstract

Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. These values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitationmore » of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.« less

Authors:
 [1];  [2];  [3];  [3];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States)
  3. Merck Research Laboratories, West Point, PA (United States). Dept. of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
Work For Others (WFO); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1259427
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Rapid Communications in Mass Spectrometry
Additional Journal Information:
Journal Volume: 30; Journal Issue: 14; Journal ID: ISSN 0951-4198
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; liquid microjunction; droplet-based liquid extraction; absolute quantitation; autosampler; spatial distribution; propranolol

Citation Formats

Kertesz, Vilmos, Weiskittel, Taylor M., Vavek, Marissa, Freddo, Carol, and Van Berkel, Gary J. Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC ESI-MS/MS. United States: N. p., 2016. Web. doi:10.1002/rcm.7607.
Kertesz, Vilmos, Weiskittel, Taylor M., Vavek, Marissa, Freddo, Carol, & Van Berkel, Gary J. Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC ESI-MS/MS. United States. doi:10.1002/rcm.7607.
Kertesz, Vilmos, Weiskittel, Taylor M., Vavek, Marissa, Freddo, Carol, and Van Berkel, Gary J. Wed . "Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC ESI-MS/MS". United States. doi:10.1002/rcm.7607. https://www.osti.gov/servlets/purl/1259427.
@article{osti_1259427,
title = {Extraction efficiency and implications for absolute quantitation of propranolol in mouse brain, liver and kidney thin tissue sections using droplet-based liquid microjunction surface sampling-HPLC ESI-MS/MS},
author = {Kertesz, Vilmos and Weiskittel, Taylor M. and Vavek, Marissa and Freddo, Carol and Van Berkel, Gary J.},
abstractNote = {Currently, absolute quantitation aspects of droplet-based surface sampling for thin tissue analysis using a fully automated autosampler/HPLC-ESI-MS/MS system are not fully evaluated. Knowledge of extraction efficiency and its reproducibility is required to judge the potential of the method for absolute quantitation of analytes from thin tissue sections. Methods: Adjacent thin tissue sections of propranolol dosed mouse brain (10- μm-thick), kidney (10- μm-thick) and liver (8-, 10-, 16- and 24- μm-thick) were obtained. Absolute concentration of propranolol was determined in tissue punches from serial sections using standard bulk tissue extraction protocols and subsequent HPLC separations and tandem mass spectrometric analysis. These values were used to determine propranolol extraction efficiency from the tissues with the droplet-based surface sampling approach. Results: Extraction efficiency of propranolol using 10- μm-thick brain, kidney and liver thin tissues using droplet-based surface sampling varied between ~45-63%. Extraction efficiency decreased from ~65% to ~36% with liver thickness increasing from 8 μm to 24 μm. Randomly selecting half of the samples as standards, precision and accuracy of propranolol concentrations obtained for the other half of samples as quality control metrics were determined. Resulting precision ( ±15%) and accuracy ( ±3%) values, respectively, were within acceptable limits. In conclusion, comparative quantitation of adjacent mouse thin tissue sections of different organs and of various thicknesses by droplet-based surface sampling and by bulk extraction of tissue punches showed that extraction efficiency was incomplete using the former method, and that it depended on the organ and tissue thickness. However, once extraction efficiency was determined and applied, the droplet-based approach provided the required quantitation accuracy and precision for assay validations. Furthermore, this means that once the extraction efficiency was calibrated for a given tissue type and drug, the droplet-based approach provides a non-labor intensive and high-throughput means to acquire spatially resolved quantitative analysis of multiple samples of the same type.},
doi = {10.1002/rcm.7607},
journal = {Rapid Communications in Mass Spectrometry},
number = 14,
volume = 30,
place = {United States},
year = {Wed Jun 22 00:00:00 EDT 2016},
month = {Wed Jun 22 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: