skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Microscale mass spectrometry systems, devices and related methods

Abstract

Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.

Inventors:
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1258005
Patent Number(s):
9,373,492
Application Number:
13/804,911
Assignee:
The University of North Carolina at Chapel Hill (Chapel Hill, NC) ORNL
DOE Contract Number:
AC05-00OR22725
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Mar 14
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Ramsey, John Michael. Microscale mass spectrometry systems, devices and related methods. United States: N. p., 2016. Web.
Ramsey, John Michael. Microscale mass spectrometry systems, devices and related methods. United States.
Ramsey, John Michael. 2016. "Microscale mass spectrometry systems, devices and related methods". United States. doi:. https://www.osti.gov/servlets/purl/1258005.
@article{osti_1258005,
title = {Microscale mass spectrometry systems, devices and related methods},
author = {Ramsey, John Michael},
abstractNote = {Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 6
}

Patent:

Save / Share:
  • Mass spectrometry systems or assemblies therefore include an ionizer that includes at least one planar conductor, a mass analyzer with a planar electrode assembly, and a detector comprising at least one planar conductor. The ionizer, the mass analyzer and the detector are attached together in a compact stack assembly. The stack assembly has a perimeter that bounds an area that is between about 0.01 mm.sup.2 to about 25 cm.sup.2 and the stack assembly has a thickness that is between about 0.1 mm to about 25 mm.
  • Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel betweenmore » the first and second membranes through isoelectric fractionation.« less
  • Embodiments of the present invention provide devices, systems, and methods for microscale isoelectric fractionation. Analytes in a sample may be isolated according to their isoelectric point within a fractionation microchannel. A microfluidic device according to an embodiment of the invention includes a substrate at least partially defining a fractionation microchannel. The fractionation microchannel has at least one cross-sectional dimension equal to or less than 1 mm. A plurality of membranes of different pHs are disposed in the microchannel. Analytes having an isoelectric point between the pH of the membranes may be collected in a region of the fractionation channel betweenmore » the first and second membranes through isoelectric fractionation.« less
  • Centrifugal separator devices, systems and related methods are described. More particularly, fluid transfer connections for a centrifugal separator system having support assemblies with a movable member coupled to a connection tube and coupled to a fixed member, such that the movable member is constrained to movement along a fixed path relative to the fixed member are described. Also, centrifugal separator systems including such fluid transfer connections are described. Additionally, methods of installing, removing and/or replacing centrifugal separators from centrifugal separator systems are described.
  • Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of amore » special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.« less