skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rapid prototype extruded conductive pathways

Abstract

A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.

Inventors:
Publication Date:
Research Org.:
Savannah River Technology Center (SRTC), Aiken, SC (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1258001
Patent Number(s):
9,373,923
Application Number:
13/675,434
Assignee:
SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC (Aiken, SC) SRNL
DOE Contract Number:
AC09-08SR22470
Resource Type:
Patent
Resource Relation:
Patent File Date: 2012 Nov 13
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Bobbitt, III, John T. Rapid prototype extruded conductive pathways. United States: N. p., 2016. Web.
Bobbitt, III, John T. Rapid prototype extruded conductive pathways. United States.
Bobbitt, III, John T. 2016. "Rapid prototype extruded conductive pathways". United States. doi:. https://www.osti.gov/servlets/purl/1258001.
@article{osti_1258001,
title = {Rapid prototype extruded conductive pathways},
author = {Bobbitt, III, John T.},
abstractNote = {A process of producing electrically conductive pathways within additively manufactured parts and similar parts made by plastic extrusion nozzles. The process allows for a three-dimensional part having both conductive and non-conductive portions and allows for such parts to be manufactured in a single production step.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month = 6
}

Patent:

Save / Share:
  • A low cost method of fabricating bipolar plates for use in fuel cells utilizes a wet lay process for combining graphite particles, thermoplastic fibers, and reinforcing fibers to produce a plurality of formable sheets. The formable sheets are then molded into a bipolar plates with features impressed therein via the molding process. The bipolar plates formed by the process have conductivity in excess of 150 S/cm and have sufficient mechanical strength to be used in fuel cells. The bipolar plates can be formed as a skin/core laminate where a second polymer material is used on the skin surface which providesmore » for enhanced conductivity, chemical resistance, and resistance to gas permeation.« less
  • Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at amore » surface of the earth or in an adjacent wellbore.« less
  • A method and apparatus is disclosed for casting conductive and semi-conductive materials. The apparatus includes a plurality of conductive members arranged to define a container-like area having a desired cross-sectional shape. A portion or all of the conductive or semi-conductive material which is to be cast is introduced into the container-like area. A means is provided for inducing the flow of an electrical current in each of the conductive members, which currents act collectively to induce a current flow in the material. The induced current flow through the conductive members is in a direction substantially opposite to the induced currentmore » flow in the material so that the material is repelled from the conductive members during the casting process.« less
  • Extruded low-expansion ceramic honeycombs comprising beta-spodumene solid solution as the principal crystal phase and with less than 7 weight percent of included mullite are produced by compounding an extrusion batch comprising a lithium aluminosilicate glass powder and a clay additive, extruding a green honeycomb body from the batch, and drying and firing the green extruded cellular honeycomb to crystallize the glass and clay into a low-expansion spodumene ceramic honeycomb body.
  • A method and apparatus (10, 40) for producing high-velocity material jets provided. An electric current pulse generator (14, 42) is attached to an end of a coaxial two-conductor transmission line (16, 44) having an outer cylindrical conductor (18), an inner cylindrical conductor (20), and a solid plastic or ceramic insulator (21) therebetween. A coxial, thin-walled metal structure (22, 30) is conductively joined to the two conductors (18, 20) of the transmission line (16, 44). An electrical current pulse applies magnetic pressure to and possibly explosively vaporizes metal structure (22), thereby collapsing it and impelling the extruded ejection of a high-velocitymore » material jet therefrom. The jet is comprised of the metal of the structure (22), together with the material that comprises any covering layers (32, 34) disposed on the structure. An electric current pulse generator of the explosively driven magnetic flux compression type or variety (42) may be advantageously used in the practice of this invention.« less