skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Description of the NIF Laser

Abstract

The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge became whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1256427
Report Number(s):
LLNL-JRNL-658239
Journal ID: ISSN 1536-1055
Grant/Contract Number:
AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Fusion Science and Technology
Additional Journal Information:
Journal Volume: 69; Journal Issue: 1; Journal ID: ISSN 1536-1055
Publisher:
American Nuclear Society
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 42 ENGINEERING; ICF; laser; fusion driver; NIF laser

Citation Formats

Spaeth, M. L., Manes, K. R., Kalantar, D. H., Miller, P. E., Heebner, J. E., Bliss, E. S., Spec, D. R., Parham, T. G., Whitman, P. K., Wegner, P. J., Baisden, P. A., Menapace, J. A., Bowers, M. W., Cohen, S. J., Suratwala, T. I., Di Nicola, J. M., Newton, M. A., Adams, J. J., Trenholme, J. B., Finucane, R. G., Bonanno, R. E., Rardin, D. C., Arnold, P. A., Dixit, S. N., Erbert, G. V., Erlandson, A. C., Fair, J. E., Feigenbaum, E., Gourdin, W. H., Hawley, R. A., Honig, J., House, R. K., Jancaitis, K. S., LaFortune, K. N., Larson, D. W., Le Galloudec, B. J., Lindl, J. D., MacGowan, B. J., Marshall, C. D., McCandless, K. P., McCracken, R. W., Montesanti, R. C., Moses, E. I., Nostrand, M. C., Pryatel, J. A., Roberts, V. S., Rodriguez, S. B., Rowe, A. W., Sacks, R. A., Salmon, J. T., Shaw, M. J., Sommer, S., Stolz, C. J., Tietbohl, G. L., Widmayer, C. C., and Zacharias, R.. Description of the NIF Laser. United States: N. p., 2017. Web. doi:10.13182/FST15-144.
Spaeth, M. L., Manes, K. R., Kalantar, D. H., Miller, P. E., Heebner, J. E., Bliss, E. S., Spec, D. R., Parham, T. G., Whitman, P. K., Wegner, P. J., Baisden, P. A., Menapace, J. A., Bowers, M. W., Cohen, S. J., Suratwala, T. I., Di Nicola, J. M., Newton, M. A., Adams, J. J., Trenholme, J. B., Finucane, R. G., Bonanno, R. E., Rardin, D. C., Arnold, P. A., Dixit, S. N., Erbert, G. V., Erlandson, A. C., Fair, J. E., Feigenbaum, E., Gourdin, W. H., Hawley, R. A., Honig, J., House, R. K., Jancaitis, K. S., LaFortune, K. N., Larson, D. W., Le Galloudec, B. J., Lindl, J. D., MacGowan, B. J., Marshall, C. D., McCandless, K. P., McCracken, R. W., Montesanti, R. C., Moses, E. I., Nostrand, M. C., Pryatel, J. A., Roberts, V. S., Rodriguez, S. B., Rowe, A. W., Sacks, R. A., Salmon, J. T., Shaw, M. J., Sommer, S., Stolz, C. J., Tietbohl, G. L., Widmayer, C. C., & Zacharias, R.. Description of the NIF Laser. United States. doi:10.13182/FST15-144.
Spaeth, M. L., Manes, K. R., Kalantar, D. H., Miller, P. E., Heebner, J. E., Bliss, E. S., Spec, D. R., Parham, T. G., Whitman, P. K., Wegner, P. J., Baisden, P. A., Menapace, J. A., Bowers, M. W., Cohen, S. J., Suratwala, T. I., Di Nicola, J. M., Newton, M. A., Adams, J. J., Trenholme, J. B., Finucane, R. G., Bonanno, R. E., Rardin, D. C., Arnold, P. A., Dixit, S. N., Erbert, G. V., Erlandson, A. C., Fair, J. E., Feigenbaum, E., Gourdin, W. H., Hawley, R. A., Honig, J., House, R. K., Jancaitis, K. S., LaFortune, K. N., Larson, D. W., Le Galloudec, B. J., Lindl, J. D., MacGowan, B. J., Marshall, C. D., McCandless, K. P., McCracken, R. W., Montesanti, R. C., Moses, E. I., Nostrand, M. C., Pryatel, J. A., Roberts, V. S., Rodriguez, S. B., Rowe, A. W., Sacks, R. A., Salmon, J. T., Shaw, M. J., Sommer, S., Stolz, C. J., Tietbohl, G. L., Widmayer, C. C., and Zacharias, R.. Thu . "Description of the NIF Laser". United States. doi:10.13182/FST15-144. https://www.osti.gov/servlets/purl/1256427.
@article{osti_1256427,
title = {Description of the NIF Laser},
author = {Spaeth, M. L. and Manes, K. R. and Kalantar, D. H. and Miller, P. E. and Heebner, J. E. and Bliss, E. S. and Spec, D. R. and Parham, T. G. and Whitman, P. K. and Wegner, P. J. and Baisden, P. A. and Menapace, J. A. and Bowers, M. W. and Cohen, S. J. and Suratwala, T. I. and Di Nicola, J. M. and Newton, M. A. and Adams, J. J. and Trenholme, J. B. and Finucane, R. G. and Bonanno, R. E. and Rardin, D. C. and Arnold, P. A. and Dixit, S. N. and Erbert, G. V. and Erlandson, A. C. and Fair, J. E. and Feigenbaum, E. and Gourdin, W. H. and Hawley, R. A. and Honig, J. and House, R. K. and Jancaitis, K. S. and LaFortune, K. N. and Larson, D. W. and Le Galloudec, B. J. and Lindl, J. D. and MacGowan, B. J. and Marshall, C. D. and McCandless, K. P. and McCracken, R. W. and Montesanti, R. C. and Moses, E. I. and Nostrand, M. C. and Pryatel, J. A. and Roberts, V. S. and Rodriguez, S. B. and Rowe, A. W. and Sacks, R. A. and Salmon, J. T. and Shaw, M. J. and Sommer, S. and Stolz, C. J. and Tietbohl, G. L. and Widmayer, C. C. and Zacharias, R.},
abstractNote = {The possibility of imploding small capsules to produce mini-fusion explosions was explored soon after the first thermonuclear explosions in the early 1950s. Various technologies have been pursued to achieve the focused power and energy required for laboratory-scale fusion. Each technology has its own challenges. For example, electron and ion beams can deliver the large amounts of energy but must contend with Coulomb repulsion forces that make focusing these beams a daunting challenge. The demonstration of the first laser in 1960 provided a new option. Energy from laser beams can be focused and deposited within a small volume; the challenge became whether a practical laser system can be constructed that delivers the power and energy required while meeting all other demands for achieving a high-density, symmetric implosion. The National Ignition Facility (NIF) is the laser designed and built to meet the challenges for study of high-energy-density physics and inertial confinement fusion (ICF) implosions. This study describes the architecture, systems, and subsystems of NIF. Finally, it describes how they partner with each other to meet these new, complex demands and describes how laser science and technology were woven together to bring NIF into reality.},
doi = {10.13182/FST15-144},
journal = {Fusion Science and Technology},
number = 1,
volume = 69,
place = {United States},
year = {Thu Mar 23 00:00:00 EDT 2017},
month = {Thu Mar 23 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12works
Citation information provided by
Web of Science

Save / Share:
  • Preliminary results of a two-dimensional design study are discussed for a SiO2 foam filled Hohlraum containing a Bi-coated re-emission capsule. The Hohlraum wall consists of a Au-U 'cocktail' designed to maximize the amount of x-ray energy produced for the capsule to absorb, given the 1 MJ laser energy into the Hohlraum. The foam fill acts to minimize wall expansion while maintaining symmetric drive on the capsule. Various foam densities and laser pointings for most efficient drive are considered. Sensitivities to drive asymmetries during the long 'foot' portion of the laser drive are calculated and shown for the re-emission capsule. Themore » foam fill was found to affect the re-emit symmetry much more than a H/He gas fill. Compensating effects in beam balance or pointing are required to maintain best symmetry. The effect of the diagnostic on the Hohlraum environment with a Cu-doped Be ignition capsule is discussed. Effects of optimal filtering for maximum signal detectability are considered.« less
  • The high-power laser facilities NIF and LMJ with the pulse energy as high as 2 MJ are being created in the USA and France. The basic cryogenic indirect-drive targets for thermonuclear ignition on these facilities are a spherical shell from polystyrene doped with oxygen and bromine. (CH+5%O+0,25%Br), whose inner surface is covered with DT-ice layer. The central region of targets is filled with DT-gas. The targets for NIF and LMJ have different external radii (1,11 and 1,215 mm, correspondingly), masses of DT-fuel (210 icy 310 {mu}g), X-ray radiation temperature dependences in time. The thermonuclear yield from the NIF target calculatedmore » with LASNEX code is 15 MJ, the yield from the LMJ target calculated with FCI1 code is 25.4 MJ. In RFNC-VNIITF calculations of compression and burning of basic NIF and LMJ targets were performed by using of the 1D ERA code in the spectral diffusion approximation for radiation transfer. We used tabulated opacity calculated by the mean ion model. Thermonuclear yield calculated with ERA code is about 18 MJ for the NIF target and nearly 23 MJ for the LMJ target. Calculated yields are in good agreement with published results. Performed calculations justified the possibility to simulate ICF targets in RFNC-VNIITF. In paper are also presented analysis results of target sensitivity to opacity and X-ray temperature variations.« less
  • High-convergence, hohlraum-driven implosions of double-shell capsules using mid-Z (SiO{sub 2}) inner shells have been performed on the OMEGA laser facility [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. These experiments provide an essential extension of the results of previous low-Z (CH) double-shell implosions [P. A. Amendt et al., Phys. Rev. Lett. 94, 065004 (2005)] to materials of higher density and atomic number. Analytic modeling, supported by highly resolved 2D numerical simulations, is used to account for the yield degradation due to interfacial atomic mixing. This extended experimental database from OMEGA enables a validation of the mix model, andmore » provides a means for quantitatively assessing the prospects for high-Z double-shell implosions on the National Ignition Facility [Paisner et al., Laser Focus World 30, 75 (1994)].« less
  • The static x-ray imager at the National Ignition Facility is a pinhole camera using a CCD detector to obtain images of Hohlraum wall x-ray drive illumination patterns seen through the laser entrance hole (LEH). Carefully chosen filters, combined with the CCD response, allow recording images in the x-ray range of 3-5 keV with 60 {mu}m spatial resolution. The routines used to obtain the apparent size of the backlit LEH and the location and intensity of beam spots are discussed and compared to predictions. A new soft x-ray channel centered at 870 eV (near the x-ray peak of a 300 eVmore » temperature ignition Hohlraum) is discussed.« less