skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sensor Network Design Algorithm for Power Plant Efficiency Maximization and Its Application

Authors:
; ;
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1255973
Report Number(s):
NETL-PUB-20382
Resource Type:
Conference
Resource Relation:
Conference: 59th Annual ISA 2016 POWID Symposium, Charlotte, NC, June 27-30 (2016).
Country of Publication:
United States
Language:
English
Subject:
01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; 97 MATHEMATICS AND COMPUTING; Sensor Network Design, Efficiency, Optimization, IGCC, Acid Gas Removal, Unscented Kalman Filer

Citation Formats

Bhattacharyya, Debangsu, Turton, Richard, and Zitney, Stephen E. Sensor Network Design Algorithm for Power Plant Efficiency Maximization and Its Application. United States: N. p., 2016. Web.
Bhattacharyya, Debangsu, Turton, Richard, & Zitney, Stephen E. Sensor Network Design Algorithm for Power Plant Efficiency Maximization and Its Application. United States.
Bhattacharyya, Debangsu, Turton, Richard, and Zitney, Stephen E. Thu . "Sensor Network Design Algorithm for Power Plant Efficiency Maximization and Its Application". United States. doi:. https://www.osti.gov/servlets/purl/1255973.
@article{osti_1255973,
title = {Sensor Network Design Algorithm for Power Plant Efficiency Maximization and Its Application},
author = {Bhattacharyya, Debangsu and Turton, Richard and Zitney, Stephen E},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Jun 30 00:00:00 EDT 2016},
month = {Thu Jun 30 00:00:00 EDT 2016}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
  • Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
  • Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less