skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Al–Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory

; ;
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
OSTI Identifier:
DOE Contract Number:
11-116792; AC02-76SF00515
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Physical Chemistry Letters; Journal Volume: 6; Journal Issue: 1
Country of Publication:
United States

Citation Formats

Chen, Leanne D., Nørskov, Jens K., and Luntz, Alan C. Al–Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. United States: N. p., 2015. Web. doi:10.1021/jz502422v.
Chen, Leanne D., Nørskov, Jens K., & Luntz, Alan C. Al–Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. United States. doi:10.1021/jz502422v.
Chen, Leanne D., Nørskov, Jens K., and Luntz, Alan C. 2015. "Al–Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory". United States. doi:10.1021/jz502422v.
title = {Al–Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory},
author = {Chen, Leanne D. and Nørskov, Jens K. and Luntz, Alan C.},
abstractNote = {},
doi = {10.1021/jz502422v},
journal = {Journal of Physical Chemistry Letters},
number = 1,
volume = 6,
place = {United States},
year = 2015,
month = 1
  • A detailed theoretical study of structural, electronic, elastic, thermodynamic and optical properties of rutile type MgF{sub 2} has been carried out by means of first-principles Density Functional Theory (DFT) calculations using plane wave pseudo-potentials within the local density approximation and generalized-gradient approximation for the exchange and correlation functionals. The calculated ground state properties and elastic constants agree quite well with experimental values. From the calculated elastic constants we conclude that MgF{sub 2} is relatively hard when compared to other alkaline-earth fluorides and ductile in nature. The thermodynamic properties such as heat capacity, entropy, free energy, phonon density of states andmore » Debye temperatures are calculated at various temperatures from the lattice dynamical data obtained through the quasi-harmonic Debye model. From free energy and entropy it is found that the system is thermodynamically stable up to 1200 K. The imaginary part of the calculated dielectric function {epsilon}{sub 2}({omega}) could reproduce the six prominent peaks which are observed in experiment. From the calculated {epsilon}({omega}), other optical properties such as refractive index, reflectivity and electron energy-loss spectrum are obtained up to the photon energy range of 30 eV. -- Graphical abstract: The calculated imaginary part {epsilon}{sub 2}({omega}) of the complex dielectric function {epsilon}({omega}) of MgF{sub 2} as a function of photon energy is shown. The calculated {epsilon}{sub 2}({omega}) could reproduce the major peaks observed in experiment. All the peaks observed are corresponds to interband transitions from 'p' states of Fluorine in valence band to the 's' states of Mg in conduction band. Display Omitted Research highlights: > Structural and bonding properties. > Optical properties. > Single and polycrystalline elastic properties. > Thermodynamic properties.« less
  • Epitaxial growth of semiconductor alloys onto a fixed substrate has become the method of choice to make high quality crystals. In the coherent epitaxial growth, the lattice mismatch between the alloy film and the substrate induces a particular form of strain, adding a strain energy term into the free energy of the alloy system. Such epitaxial strain energy can alter the thermodynamics of the alloy, leading to a different phase diagram and different atomic microstructures. In this paper, we present a general-purpose mixed-basis cluster expansion method to describe the thermodynamics of an epitaxial alloy, where the formation energy of amore » structure is expressed in terms of pair and many-body interactions. With a finite number of first-principles calculation inputs, our method can predict the energies of various atomic structures with an accuracy comparable to that of first-principles calculations themselves. Epitaxial (In, Ga)N zinc-blende alloy grown on GaN(001) substrate is taken as an example to demonstrate the details of the method. Two (210) superlattice structures, (InN){sub 2}/(GaN){sub 2} (at x = 0.50) and (InN){sub 4}/(GaN){sub 1} (at x = 0.80), are identified as the ground state structures, in contrast to the phase-separation behavior of the bulk alloy.« less
  • Alkali metal zirconates could be used as solid sorbents for CO{sub 2} capture. The structural, electronic, and phonon properties of Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{sub 2}CO{sub 3}, and K{sub 2}CO{sub 3} are investigated by combining the density functional theory with lattice phonon dynamics. The thermodynamics of CO{sub 2} absorption/desorption reactions of these two zirconates are analyzed. The calculated results show that their optimized structures are in a good agreement with experimental measurements. The calculated band gaps are 4.339 eV (indirect), 3.641 eV (direct), 3.935 eV (indirect), and 3.697 eV (direct) for Na{sub 2}ZrO{sub 3}, K{sub 2}ZrO{sub 3}, Na{submore » 2}CO{sub 3}, and K{sub 2}CO{sub 3}, respectively.The calculated phonon dispersions and phonon density of states for M{sub 2}ZrO{sub 3} and M{sub 2}CO{sub 3} (M = K, Na, Li) revealed that from K to Na to Li, their frequency peaks are shifted to high frequencies due to the molecular weight decreased from K to Li. From the calculated reaction heats and relationships of free energy change versus temperatures and CO{sub 2} pressures of the M{sub 2}ZrO{sub 3} (M = K, Na, Li) reacting with CO{sub 2}, we found that the performance of Na{sub 2}ZrO{sub 3} capturing CO{sub 2} is similar to that of Li{sub 2}ZrO{sub 3} and is better than that of K{sub 2}ZrO{sub 3}. Therefore, Na{sub 2}ZrO{sub 3} and Li{sub 2}ZrO{sub 3} are good candidates of high temperature CO{sub 2} sorbents and could be used for post combustion CO{sub 2} capture technologies.« less
  • Despite being one of the most important thermodynamic variables, pH has yet to be incorporated into first-principles thermodynamics to calculate stability of acidic and basic solutes in aqueous solutions. By treating the solutes as defects in homogeneous liquids, we formulate a first-principles approach to calculate their formation energies under proton chemical potential, or pH, based on explicit molecular dynamics. The method draws analogy to first-principle calculations of defect formation energies under electron chemical potential, or Fermi energy, in semiconductors. From this, we propose a simple pictorial representation of the general theory of acid-base chemistry. By performing first-principles molecular dynamics ofmore » liquid water models with solutes, we apply the formulation to calculate formation energies of various neutral and charged solutes such as H{sup +}, OH{sup -}, NH{sub 3}, NH{sub 4}{sup +}, HCOOH, and HCOO{sup -} in water. The deduced auto-dissociation constant of water and the difference in the pKa values of NH{sub 3} and HCOOH show good agreement with known experimental values. Our first-principles approach can be further extended and applied to other bio- and electro-chemical molecules such as amino acids and redox reaction couples that could exist in aqueous environments to understand their thermodynamic stability.« less