skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Analysis of Travel Logistics for Transportation of Used Nuclear Fuel in the Continental United States - 15179

; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy - Office of Fuel Cycle Technologies
OSTI Identifier:
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: 2015 Waste Management Symposium, 03/15/15 - 03/19/15, Phoenix, AZ, USA
Country of Publication:
United States

Citation Formats

Wentland, Christopher R., Hicks, Grant T., and Nutt, William. Analysis of Travel Logistics for Transportation of Used Nuclear Fuel in the Continental United States - 15179. United States: N. p., 2015. Web.
Wentland, Christopher R., Hicks, Grant T., & Nutt, William. Analysis of Travel Logistics for Transportation of Used Nuclear Fuel in the Continental United States - 15179. United States.
Wentland, Christopher R., Hicks, Grant T., and Nutt, William. 2015. "Analysis of Travel Logistics for Transportation of Used Nuclear Fuel in the Continental United States - 15179". United States. doi:.
title = {Analysis of Travel Logistics for Transportation of Used Nuclear Fuel in the Continental United States - 15179},
author = {Wentland, Christopher R. and Hicks, Grant T. and Nutt, William},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2015,
month = 1

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • ABSTRACT This paper describes a tool that will allow public health analysts to estimate infectious disease risk at the country level as a function of different international transportation modes. The prototype focuses on a cholera epidemic originating within Latin America or the Caribbean, but it can be expanded to consider other pathogens as well. This effort leverages previous work in collaboration with the Centers for Disease Control and Prevention to develop the International Travel to Community Impact (IT-CI) model, which analyzes and assesses potential international disease outbreaks then estimates the associated impacts to U.S. communities and the nation as amore » whole and orient it for use Outside the Continental United States (OCONUS). For brevity, we refer to this refined model as OIT-CI. First, we developed an operationalized meta-population spatial cholera model for Latin America and the Caribbean at the secondary administrative-level boundary. Secondly, we developed a robust function of human airline critical to approximating mixing patterns in the meta- population model. In the prototype version currently presented here, OIT-CI models a cholera epidemic originating in a Latin American or Caribbean country and spreading via airline transportation routes. Disease spread is modeled at the country level using a patch model with a connectivity function based on demographic, geospatial, and human transportation data. We have also identified data to estimate the water and health-related infrastructure capabilities of each country to include this potential impact on disease transmission.« less
  • An alternative approach may be needed to the licensing of high-burnup fuel for storage and transportation based on the assumption that spent fuel cladding may not always remain intact. The approach would permit spent fuel to be retrieved on a canister basis and could lessen the need for repackaging of spent fuel. This approach is being presented as a possible engineering solution to address the uncertainties and lack of data availability for cladding properties for high burnup fuel and extended storage time frames. The proposed approach does not involve relaxing current safety standards for criticality safety, containment, or permissible externalmore » dose rates. Packaging strategies and regulations should be developed to reduce the potential for requiring fuel to be repackaged unnecessarily. This would lessen the chance of accidents and mishaps during loading and unloading of casks, and decrease dose to workers. A packaging approach that shifts the safety basis from reliance upon the fuel condition to reliance upon an inner canister could eliminate or lessen the need for repackaging. In addition, the condition of canisters can be more readily monitored and inspected than the condition of fuel cladding. Canisters can also be repaired and/or replaced when deemed necessary. In contrast, once a fuel assembly is loaded into a canister and placed in a storage overpack, there is little opportunity to monitor its condition or take mitigating measures if cladding degradation is suspected or proven to occur. (authors)« less
  • A study and comparison of the goals and understandings of nonproliferation authorities with those of used nuclear fuel (UNF) recycle advocates have uncovered (1) some of the basic reasons for the creation of uncertainties by each of the parties, (2) why these uncertainties have become a major barrier to a decision to recycle UNF components in the United States, and (3) what steps can be taken to clarify these uncertainties. Recent papers and viewpoints expressed by nonproliferation authorities and technical consultants were reviewed, summarized, and compared with results of recent fuel cycle systems analyses made at Oak Ridge National Laboratory.more » 1 Similarities and differences were identified, including both technical and policy factors. Nonproliferation authorities and a few UNF recycle advocates have recognized that the reprocessing technologies used for UNF component recycle do not offer significant nonproliferation differences; thus, the methods used can be chosen on some other basis, such as process efficiency, maturity, and/or economics. This paper reviews the safeguards implications beyond the simple assessment of UNF recycle technology selection. Differences in understanding that led to uncertainty barriers to UNF recycle include (1) the vulnerability of unseparated UNF, (2) the effects of time factors on production and accumulation of fissile plutonium isotopes and decay of the ?self-protecting radiation barrier,? (3) the chemistry of UNF components and relative ease of separation, and (4) the significant differences in commercialscale ?safeguards-by-design? UNF recycle facilities and smaller-scale covert operations. Application of safeguards-by-design and engineered safeguards can provide the defense-in-depth necessary for sufficient safeguards. Establishing these requirements for governing acceptable commercial UNF component recycle is essential.« less