skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A computationally efficient approach for watershed scale spatial optimization

; ORCiD logo
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Environmental Modelling and Software
Additional Journal Information:
Journal Volume: 66; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-07-18 09:59:22; Journal ID: ISSN 1364-8152
Country of Publication:
United Kingdom

Citation Formats

Cibin, R., and Chaubey, I.. A computationally efficient approach for watershed scale spatial optimization. United Kingdom: N. p., 2015. Web. doi:10.1016/j.envsoft.2014.12.014.
Cibin, R., & Chaubey, I.. A computationally efficient approach for watershed scale spatial optimization. United Kingdom. doi:10.1016/j.envsoft.2014.12.014.
Cibin, R., and Chaubey, I.. 2015. "A computationally efficient approach for watershed scale spatial optimization". United Kingdom. doi:10.1016/j.envsoft.2014.12.014.
title = {A computationally efficient approach for watershed scale spatial optimization},
author = {Cibin, R. and Chaubey, I.},
abstractNote = {},
doi = {10.1016/j.envsoft.2014.12.014},
journal = {Environmental Modelling and Software},
number = C,
volume = 66,
place = {United Kingdom},
year = 2015,
month = 4

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.envsoft.2014.12.014

Citation Metrics:
Cited by: 11works
Citation information provided by
Web of Science

Save / Share:
  • This article develops a dynamic spatial optimization algorithm for watershed modeling that reduces dimensionality and incorporates multiple objectives. Spatial optimization methods, which include spatially linear and nonlinear formulations, are applied to an experimental watershed and tested against a full enumeration frontier. The integrated algorithm includes biophysical simulation and economic decision-making within a geographic information system. It was observed that it is possible to achieve economic and water quality objectives in a watershed by spatially optimizing site-specific practices. It was observed that a spatially diversified watershed plan could achieve multiple goals in a watershed. The algorithm can be used to developmore » efficient policies towards environmental management of watersheds to address water quality issues by identifying optimal tradeoffs across objectives.« less
  • The present work describes a new method to compute accurate spin densities for open shell systems. The proposed approach follows two steps: first, it provides molecular orbitals which correctly take into account the spin delocalization; second, a proper CI treatment allows to account for the spin polarization effect while keeping a restricted formalism and avoiding spin contamination. The main idea of the optimization procedure is based on the orbital relaxation of the various charge transfer determinants responsible for the spin delocalization. The algorithm is tested and compared to other existing methods on a series of organic and inorganic open shellmore » systems. The results reported here show that the new approach (almost black-box) provides accurate spin densities at a reasonable computational cost making it suitable for a systematic study of open shell systems.« less
  • Despite its success at simulating accurately both non-neutral and quasi-neutral weakly-ionized plasmas, the drift-diffusion model has been observed to be a particularly stiff set of equations. Recently, it was demonstrated that the stiffness of the system could be relieved by rewriting the equations such that the potential is obtained from Ohm's law rather than Gauss's law while adding some source terms to the ion transport equation to ensure that Gauss's law is satisfied in non-neutral regions. Although the latter was applicable to multicomponent and multidimensional plasmas, it could not be used for plasmas in which the magnetic field was significant.more » This paper hence proposes a new computationally-efficient set of electron and ion transport equations that can be used not only for a plasma with multiple types of positive and negative ions, but also for a plasma in magnetic field. Because the proposed set of equations is obtained from the same physical model as the conventional drift-diffusion equations without introducing new assumptions or simplifications, it results in the same exact solution when the grid is refined sufficiently while being more computationally efficient: not only is the proposed approach considerably less stiff and hence requires fewer iterations to reach convergence but it yields a converged solution that exhibits a significantly higher resolution. The combined faster convergence and higher resolution is shown to result in a hundredfold increase in computational efficiency for some typical steady and unsteady plasma problems including non-neutral cathode and anode sheaths as well as quasi-neutral regions.« less
  • The increasing demand for bioenergy crops presents our society with the opportunity to design more sustainable landscapes. We have created a Biomass Location for Optimal Sustainability Model (BLOSM) to test the hypothesis that landscape design of cellulosic bioenergy crop plantings may simultaneously improve water quality (i.e., decrease concentrations of sediment, total phosphorus, and total nitrogen) and increase profits for farmer-producers while achieving a feedstock-production goal. BLOSM was run using six scenarios to identify switchgrass (Panicum virgatum) planting locations that might supply a commercial-scale biorefinery planned for the Lower Little Tennessee (LLT) watershed. Each scenario sought to achieve different sustainability goals:more » improving water quality through reduced nitrogen, phosphorus, or sediment concentrations; maximizing profit; a balance of these conditions; or a balance of these conditions with the additional constraint of converting no more than 25% of agricultural land. Scenario results were compared to a baseline case of no land-use conversion. BLOSM results indicate that a combined economic and environmental optimization approach can achieve multiple objectives simultaneously when a small proportion (1.3%) of the LLT watershed is planted with perennial switchgrass. The multimetric optimization approach described here can be used as a research tool to consider bioenergy plantings for other feedstocks, sustainability criteria, and regions.« less
  • The effect of nanometer-scale spatial separation between Er{sup 3+} and Tm{sup 3+} ions in Er and Tm codoped silicon-rich silicon oxide (SRSO) films is investigated. Er and Tm codoped SRSO films, which consist of nanocluster Si (nc-Si) embedded inside SiO{sub 2} matrix, were fabricated with electron cyclotron resonance-plasma enhanced chemical vapor deposition of SiH{sub 4} and O{sub 2} with concurrent sputtering of Er and Tm metal targets. Spatial separation between Er{sup 3+} and Tm{sup 3+} ions was achieved by depositing alternating layers of Er- and Tm-doped layers of varying thickness while keeping the total film thickness the same. The filmsmore » display broadband infrared photoluminescence (PL) from 1.5 to 2.0 {mu}m under a single source excitation due to simultaneous excitation of Er{sup 3+} and Tm{sup 3+} ions by nc-Si. Increasing the layer thickness from 0 to 72 nm increases the Er{sup 3+} PL intensity nearly 50-fold while the Tm{sup 3+} PL intensity is unaffected. The data are well-explained by a model assuming a dipole-dipole interaction between excited Er{sup 3+} and Tm{sup 3+} ions, and suggest that by nanoscale engineering, efficient, ultrabroadband infrared luminescence can be obtained in an optically homogeneous material using a single light source.« less