skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

Abstract

The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.

Authors:
 [1];  [2];  [2];  [3];  [4];  [5];  [5];  [2];  [5];  [2];  [1];  [6];  [2];  [2];  [2];  [7];  [2];  [8];  [2];  [6] more »;  [1];  [2];  [5] « less
  1. Univ. of California, Berkeley, CA (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Univ. of Warwick, Coventry (United Kingdom)
  4. Max-Planck-Institut fur Physik Komplexer Systeme, Dresden (Germany); Institute of Radiation Physics, Dresden (Germany)
  5. Technische Univ. Darmstadt, Darmstadt (Germany)
  6. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  7. Univ. of Oxford, Oxford (United Kingdom)
  8. GSI Helmholtzzentrum fur Schwerionenforschung GmbH, Darmstadt (Germany)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1249384
Alternate Identifier(s):
OSTI ID: 1252606
Report Number(s):
SLAC-REPRINT-2016-009; LLNL-JRNL-665618
Journal ID: ISSN 2041-1723; ncomms10970
Grant/Contract Number:  
AC02-76SF00515; AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 7; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING

Citation Formats

Kraus, D., Ravasio, A., Gauthier, M., Gericke, D. O., Vorberger, J., Frydrych, S., Helfrich, J., Fletcher, L. B., Schaumann, G., Nagler, B., Barbrel, B., Bachmann, B., Gamboa, E. J., Gode, S., Granados, E., Gregori, G., Lee, H. J., Neumayer, P., Schumaker, W., Doppner, T., Falcone, R. W., Glenzer, S. H., and Roth, M. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. United States: N. p., 2016. Web. doi:10.1038/ncomms10970.
Kraus, D., Ravasio, A., Gauthier, M., Gericke, D. O., Vorberger, J., Frydrych, S., Helfrich, J., Fletcher, L. B., Schaumann, G., Nagler, B., Barbrel, B., Bachmann, B., Gamboa, E. J., Gode, S., Granados, E., Gregori, G., Lee, H. J., Neumayer, P., Schumaker, W., Doppner, T., Falcone, R. W., Glenzer, S. H., & Roth, M. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. United States. doi:10.1038/ncomms10970.
Kraus, D., Ravasio, A., Gauthier, M., Gericke, D. O., Vorberger, J., Frydrych, S., Helfrich, J., Fletcher, L. B., Schaumann, G., Nagler, B., Barbrel, B., Bachmann, B., Gamboa, E. J., Gode, S., Granados, E., Gregori, G., Lee, H. J., Neumayer, P., Schumaker, W., Doppner, T., Falcone, R. W., Glenzer, S. H., and Roth, M. Mon . "Nanosecond formation of diamond and lonsdaleite by shock compression of graphite". United States. doi:10.1038/ncomms10970. https://www.osti.gov/servlets/purl/1249384.
@article{osti_1249384,
title = {Nanosecond formation of diamond and lonsdaleite by shock compression of graphite},
author = {Kraus, D. and Ravasio, A. and Gauthier, M. and Gericke, D. O. and Vorberger, J. and Frydrych, S. and Helfrich, J. and Fletcher, L. B. and Schaumann, G. and Nagler, B. and Barbrel, B. and Bachmann, B. and Gamboa, E. J. and Gode, S. and Granados, E. and Gregori, G. and Lee, H. J. and Neumayer, P. and Schumaker, W. and Doppner, T. and Falcone, R. W. and Glenzer, S. H. and Roth, M.},
abstractNote = {The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.},
doi = {10.1038/ncomms10970},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 7,
place = {United States},
year = {2016},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Formation of Diamond by Explosive Shock
journal, June 1961


Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material
journal, November 2014

  • Németh, Péter; Garvie, Laurence A. J.; Aoki, Toshihiro
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6447

Preparation of Diamond
journal, October 1959

  • Bovenkerk, H. P.; Bundy, F. P.; Hall, H. T.
  • Nature, Vol. 184, Issue 4693
  • DOI: 10.1038/1841094a0

Shock-induced martensitic phase transformation of oriented graphite to diamond
journal, January 1991

  • Erskine, D. J.; Nellis, W. J.
  • Nature, Vol. 349, Issue 6307
  • DOI: 10.1038/349317a0

Hexagonal Diamonds in Meteorites: Implications
journal, February 1967


The ice layer in Uranus and Neptune—diamonds in the sky?
journal, July 1981


Hexagonal Diamond—A New Form of Carbon
journal, May 1967

  • Bundy, F. P.; Kasper, J. S.
  • The Journal of Chemical Physics, Vol. 46, Issue 9
  • DOI: 10.1063/1.1841236

Lonsdaleite, a Hexagonal Polymorph of Diamond
journal, May 1967

  • Frondel, Clifford; Marvin, Ursula B.
  • Nature, Vol. 214, Issue 5088
  • DOI: 10.1038/214587a0

Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite
journal, February 2009


New evidence of meteoritic origin of the Tunguska cosmic body
journal, August 2013

  • Kvasnytsya, Victor; Wirth, Richard; Dobrzhinetskaya, Larissa
  • Planetary and Space Science, Vol. 84
  • DOI: 10.1016/j.pss.2013.05.003

Diamond and silicon carbide in impact melt rock from the Ries impact crater
journal, November 1995

  • Hough, R. M.; Gilmour, I.; Pillinger, C. T.
  • Nature, Vol. 378, Issue 6552
  • DOI: 10.1038/378041a0

Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments
journal, July 2009

  • Kennett, D. J.; Kennett, J. P.; West, A.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 31
  • DOI: 10.1073/pnas.0906374106

Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta
journal, August 1991

  • Carlisle, David Brez; Braman, Dennis R.
  • Nature, Vol. 352, Issue 6337
  • DOI: 10.1038/352708a0

Extent of stacking disorder in diamond
journal, October 2015


Shock‐induced martensitic transformation of highly oriented graphite to diamond
journal, May 1992

  • Erskine, David J.; Nellis, William J.
  • Journal of Applied Physics, Vol. 71, Issue 10
  • DOI: 10.1063/1.350633

Probing the Complex Ion Structure in Liquid Carbon at 100 GPa
journal, December 2013


Formation of high-pressure minerals in shocked L6 chondrite Yamato 791384: constraints on shock conditions and parent body size
journal, November 2004

  • Ohtani, Eiji; Kimura, Yukiko; Kimura, Makoto
  • Earth and Planetary Science Letters, Vol. 227, Issue 3-4
  • DOI: 10.1016/j.epsl.2004.08.018

Ultrafast transformation of graphite to diamond: An ab initio study of graphite under shock compression
journal, May 2008

  • Mundy, Christopher J.; Curioni, Alessandro; Goldman, Nir
  • The Journal of Chemical Physics, Vol. 128, Issue 18
  • DOI: 10.1063/1.2913201

Shock-compressed graphite to diamond transformation on nanosecond time scales
journal, May 2013


Pressure-Induced Transformation Path of Graphite to Diamond
journal, May 1995


Structural and electronic properties of carbon in hybrid diamond-graphite structures
journal, December 2005


Nucleation mechanism for the direct graphite-to-diamond phase transition
journal, July 2011

  • Khaliullin, Rustam Z.; Eshet, Hagai; Kühne, Thomas D.
  • Nature Materials, Vol. 10, Issue 9
  • DOI: 10.1038/nmat3078

The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond
journal, February 2012

  • Kurdyumov, A. V.; Britun, V. F.; Yarosh, V. V.
  • Journal of Superhard Materials, Vol. 34, Issue 1
  • DOI: 10.3103/S1063457612010029

Molecular Dynamics Simulations of Shock Compressed Graphite
journal, June 2013

  • Pineau, Nicolas
  • The Journal of Physical Chemistry C, Vol. 117, Issue 24
  • DOI: 10.1021/jp403568m

Mechanism for direct graphite-to-diamond phase transition
journal, August 2014

  • Xie, Hongxian; Yin, Fuxing; Yu, Tao
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05930

Predominant parameters in the shock‐induced transition from graphite to diamond
journal, September 1995

  • Hirai, Hisako; Kukino, Satoru; Kondo, Ken‐ichi
  • Journal of Applied Physics, Vol. 78, Issue 5
  • DOI: 10.1063/1.360056

New experimental platform to study high density laser-compressed matter
journal, November 2014

  • Gauthier, M.; Fletcher, L. B.; Ravasio, A.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4896175

Carbon at pressures in the range 0.1–1 TPa (10 Mbar)
journal, July 2001

  • Nellis, W. J.; Mitchell, A. C.; McMahan, A. K.
  • Journal of Applied Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.1381047

Carbon Phase Diagram from Ab Initio Molecular Dynamics
journal, October 2005


Compression of polyhedral graphite up to 43 GPa and x-ray diffraction study on elasticity and stability of the graphite phase
journal, June 2004

  • Nakayama, Atsuko; Iijima, Sumio; Koga, Yoshinori
  • Applied Physics Letters, Vol. 84, Issue 25
  • DOI: 10.1063/1.1763641

X-ray diffraction data for graphite to 20 GPa
journal, July 1989


Total energy calculations of the lattice properties of cubic and hexagonal diamond
journal, June 1998


The complex ion structure of warm dense carbon measured by spectrally resolved x-ray scatteringa)
journal, May 2015

  • Kraus, D.; Vorberger, J.; Helfrich, J.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920943

    Works referencing / citing this record:

    Metal halide perovskites under compression
    journal, January 2019

    • Li, Qian; Zhang, Liming; Chen, Zhongwei
    • Journal of Materials Chemistry A, Vol. 7, Issue 27
    • DOI: 10.1039/c9ta04930d

    Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
    journal, March 2019


    Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
    journal, January 2018


    Density response to short-pulse excitation in gold
    journal, March 2019

    • Ndione, P. D.; Weber, S. T.; Rethfeld, B.
    • Contributions to Plasma Physics, Vol. 59, Issue 4-5
    • DOI: 10.1002/ctpp.201800186

    Density response to short-pulse excitation in gold
    journal, March 2019

    • Ndione, P. D.; Weber, S. T.; Rethfeld, B.
    • Contributions to Plasma Physics, Vol. 59, Issue 4-5
    • DOI: 10.1002/ctpp.201800186

    Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications
    journal, January 2018


    Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa
    journal, March 2019


    Metal halide perovskites under compression
    journal, January 2019

    • Li, Qian; Zhang, Liming; Chen, Zhongwei
    • Journal of Materials Chemistry A, Vol. 7, Issue 27
    • DOI: 10.1039/c9ta04930d