skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Safety testing of electrochemical cells and systems.


Abstract not provided.

Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the Next Generation Batteries held April 21-22, 2015 in La Jolla, CA.
Country of Publication:
United States

Citation Formats

Lamb, Joshua. Safety testing of electrochemical cells and systems.. United States: N. p., 2015. Web.
Lamb, Joshua. Safety testing of electrochemical cells and systems.. United States.
Lamb, Joshua. 2015. "Safety testing of electrochemical cells and systems.". United States. doi:.
title = {Safety testing of electrochemical cells and systems.},
author = {Lamb, Joshua},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2015,
month = 4

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • This six-volume report contains 156 papers out of the 175 that were presented at the Fourteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 27-31, 1986. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included thirty-four different papers presented by researchers from Canada, Czechoslovakia, Finland, Germany, Italy, Japan, Mexico, Spain, Sweden, Switzerland and the United Kingdom. The titles of the papers andmore » the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.« less
  • To address lithium-ion cell safety issues in demanding power applications, electrical and thermal abuse tests were performed on 18650 sized cells. Video and electrically monitored abuse tests in air included short circuit, forced overcharge, forced reversal, and controlled overheating (thermal) modes. Controlled overheating tests to 200 C were performed in a sealed chamber under a helium atmosphere and the gases released from the cell during thermal runaway were analyzed at regular intervals using gas chromatography and mass spectrometry. In addition to alkane and alkene solvent breakdown fragments, significant H{sub 2} was detected and evidence that HF was evolved was alsomore » found.« less
  • The concern over seismic susceptibility of naturally-aged lead-acid batteries used for safety-related emergency power in nuclear power stations was brought about by battery problems that periodically had been reported in Licensee Event Reports (LERs). The Turkey Point Station had reported cracked and buckled plates in several cells in October 1974 (LER 75-5). The Fitzpatrick Station had reported cracked battery cell cases in October 1977 (LER 77-55) and again in September 1979 (LER 79-59). The Browns Ferry Station had reported a cracked cell leaking a small quantity of electrolyte in July 1981 (LER 81-42). The Indian Point Station had reported crackedmore » and leaking cells in both February (LER 82-7) and April 1982 (LER 82-16); both of these LERs indicated the cracked cells were due to expansion (i.e., growth) of the positive plates.« less
  • Heavily-shielded energy material shipping systems, similar in size and weight to those presently employed to transport irradiated reactor fuel elements, are being destructively tested under dynamic conditions. In these tests, the outer and inner steel shells interact in a complex manner with the massive biological shielding in the system. Results obtained from these tests provide needed information for new design concepts. Containment failure (and the resulting release of radioactive material to the environment which might occur in an extremely severe accident) is most likely through the seals and other ancillary features of the shipping systems. Analyses and experiments provide engineeringmore » data on the behavior of these shipping systems under severe accident conditions and information for predicting potential survivability and environmental control with a rational margin of safety.« less