skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SUBSURFACE BIO-MEDIATED REDUCTION OF HIGHER-VALENT URANIUM AND PLUTONIUM

Authors:
 [1];  [1];  [1];  [2]
  1. Los Alamos National Laboratory
  2. NON LANL
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1248088
Report Number(s):
LA-UR-07-1901
DOE Contract Number:
AC52-06NA25396
Resource Type:
Conference
Resource Relation:
Conference: PLUTONIUM FUTURES 2006 ; 200607 ; MONTEREY
Country of Publication:
United States
Language:
English

Citation Formats

REED, DONALD T., RICHMANN, MICHAEL K., PEPPER, SARAH E., and RITTMANN, BRUCE E. SUBSURFACE BIO-MEDIATED REDUCTION OF HIGHER-VALENT URANIUM AND PLUTONIUM. United States: N. p., 2007. Web.
REED, DONALD T., RICHMANN, MICHAEL K., PEPPER, SARAH E., & RITTMANN, BRUCE E. SUBSURFACE BIO-MEDIATED REDUCTION OF HIGHER-VALENT URANIUM AND PLUTONIUM. United States.
REED, DONALD T., RICHMANN, MICHAEL K., PEPPER, SARAH E., and RITTMANN, BRUCE E. Wed . "SUBSURFACE BIO-MEDIATED REDUCTION OF HIGHER-VALENT URANIUM AND PLUTONIUM". United States. doi:. https://www.osti.gov/servlets/purl/1248088.
@article{osti_1248088,
title = {SUBSURFACE BIO-MEDIATED REDUCTION OF HIGHER-VALENT URANIUM AND PLUTONIUM},
author = {REED, DONALD T. and RICHMANN, MICHAEL K. and PEPPER, SARAH E. and RITTMANN, BRUCE E.},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Mar 21 00:00:00 EDT 2007},
month = {Wed Mar 21 00:00:00 EDT 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Plutonium has a long half-life (2.4 x 104 years) and is of concern because of its chemical and radiological toxicity, high-energy alpha radioactive decay. A full understanding of its speciation and interactions with environmental processes is required in order to predict, contain, or remediate contaminated sites. Under aerobic conditions Pu is sparingly soluble, existing primarily in its tetravalent oxidation state. To the extent that pentavalent and hexavalent complexes and small colloidal species form they will increase the solubility and resultant mobility from contamination sources. There is evidence that in both marine environments and brines substantial fractions of the plutonium inmore » solution is present as hexavalent plutonyl, PuO2 2+.« less
  • A second field-scale electron donor amendment experiment was conducted in 2003 at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The objective of the 2003 experiment (done in collaboration with the U.S. Department of Energy's UMTRA Groundwater Project) was to test the hypothesis that amendment of increased concentration of electron donor would result in an increased export of electron donor down gradient which in turn would create a larger zone of down-gradient U(VI) bioreduction sustained over a longer time period relative to the 2002 experiment (Anderson et al. 2003). During the first experiment (2002), {approx}3more » mM acetate was amended to subsurface over a period of 3 months in a 15m by 18m by 2.5m volume comprised of 3 upgradient monitoring wells, 20 injection wells, and 15 down-gradient monitoring wells. After an initial one-month phase of metal reduction, bioavailable oxidized Fe was consumed near the injection gallery and the dominant terminal electron accepting process became sulfate reduction, rapidly consuming the injected acetate. For the 2003 experiment, we amended sufficient acetate ({approx}10 mM) to consume available sulfate and export acetate down-gradient where bioavailable oxidized Fe was still present. Data from the experiment indicate that acetate was exported further down gradient, resulting in a larger zone of microbial U(VI) reduction than for the 2002 experiment. Geohydrologic, geochemical, and microbiological data collected during the course of both experiments enable assessment of relative importance of a number of factors controlling the experimental outcomes. Companion posters by Anderson et al. and White et al. provide additional results.« less
  • The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. Reference annual mass flows and inventories for a representative 1,400 Mwe Pressurized Water Reactor (PWR) fuel cycle have been investigated for three cases: the 100 percent uranium oxide UO{sub 2} fuel loading once through cycle, and the 33 percent mixed oxide MOXmore » loading configuration for a first and second plutonium recycle. The analysis addresses fuel cycle developments; plutonium and uranium inventory and flow balances; nuclear fuel processing operations; UO{sub 2} once-through and MOX first and second recycles; and the economic incentives to draw-down the excess separated plutonium stores. The preliminary analysis explores several options in reducing the excess separated plutonium arisings and HEU, and the consequences of the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials on nonproliferation and safeguards policy assessments.« less
  • The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials.
  • The purpose of this preliminary investigation is to explore alternatives and strategies aimed at the gradual reduction of the excess inventories of separated plutonium and high-enriched uranium (HEU) in the civilian nuclear power industry. The study attempts to establish a technical and economic basis to assist in the formation of alternative approaches consistent with nonproliferation and safeguards concerns. The analysis addresses several options in reducing the excess separated plutonium and HEU, and the consequences on nonproliferation and safeguards policy assessments resulting from the interacting synergistic effects between fuel cycle processes and isotopic signatures of nuclear materials.