skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Higher Americium Oxidation State Research Roadmap

Technical Report ·
DOI:https://doi.org/10.2172/1245530· OSTI ID:1245530
 [1];  [1];  [2];  [3];  [3];  [4];  [4];  [5];  [5]
  1. Idaho National Lab. (INL), Idaho Falls, ID (United States)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  5. Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

The partitioning of hexavalent Am from dissolved nuclear fuel requires the ability to efficiently oxidize Am(III) to Am(VI) and to maintain that oxidation state for a length of time sufficient to perform the separation. Several oxidants have been, or are being developed. Chemical oxidants include Ag-catalyzed ozone, Ag-catalyzed peroxydisulfate, Cu(III) periodate, and sodium bismuthate. Hexavalent americium has also now successfully been prepared by electrolysis, using functionalized electrodes. So-called auto-reduction rates of Am(VI) are sufficiently slow to allow for separations. However, for separations based on solvent extraction or ion exchange using organic resins, the high valence state must be maintained under the reducing conditions of the organic phase contact, and a holding oxidant is probably necessary. Until now, only Cu(III) periodate and sodium bismuthate oxidation have been successfully combined with solvent extraction separations. Bismuthate oxidation provided the higher DAm, since it acts as its own holding oxidant, and a successful hot test using centrifugal contactors was performed. For the other oxidants, Ag-catalyzed peroxydisulfate will not oxidize americium in nitric acid concentrations above 0.3 M, and it is not being further investigated. Peroxydisulfate in the absence of Ag catalysis is being used to prepare Am(V) in ion exchange work, discussed below. Preliminary work with Ag-catalyzed ozone has been unsuccessful for extractions of Am(VI) from 6.5 M HNO3, and only one attempt at extraction, also from 6.5 M HNO3, using the electrolytic oxidation has been attempted. However, this high acid concentration was based on the highest Am extraction efficiency using the bismuthate oxidant; which is only sparingly soluble, and thus the oxidation yield is based on bismuthate solubility. Lower acid concentrations may be sufficient with alternative oxidants and work with Ag-ozone, Cu(III) and electrolysis is on-going. Two non-solvent-extraction separations are also under investigation. The first would separate Am(VI) by co-crystallization with uranium and the other oxidizable actinides as their nitrate salts. This novel idea has been successful in lab scale testing, and merits further investigation. Similarly, success has been achieved in separations using inorganic or hybrid ion exchange materials to sorb the lanthanides and actinides, while allowing pentavalent americium to elute. This is the only technique currently investigating Am(V), despite the advantages of this oxidation state with regard to its higher stability. The ultimate destination for this roadmap is to develop an americium separation that can be applied under process conditions, preferably affording a co-separation of the actinyl (VI) ions. Toward that end, emphasis is given here to selection of a solvent extraction flowsheet for testing in the INL centrifugal contactor hot test bed during FY16. A solvent extraction process will be tested mainly because solvent extraction separations of Am(VI) are relatively mature and the test bed currently exists in a configuration to support them. Thus, a major goal of FY16 is to select the oxidant/ligand combination to run such a test using the contactors. The only ligands under consideration are DAAP and DEHBA. This is not to say that ion exchange and co-crystallization techniques are unimportant. They merit continued investigation, but are not mature enough for hot test bed testing at this time.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE Office of Nuclear Energy (NE)
DOE Contract Number:
AC07-05ID14517
OSTI ID:
1245530
Report Number(s):
INL/EXT-15-37534
Country of Publication:
United States
Language:
English

Similar Records

Am(VI) Extraction Final Report: FY16
Technical Report · Mon Aug 01 00:00:00 EDT 2016 · OSTI ID:1245530

Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions
Technical Report · Wed Sep 30 00:00:00 EDT 2015 · OSTI ID:1245530

Oxidation and Extraction of Americium(VI) from Lanthanides
Conference · Tue Sep 01 00:00:00 EDT 2015 · OSTI ID:1245530