skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Methods of synthesizing thermoelectric materials

Abstract

Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.

Inventors:
; ; ; ; ; ;
Publication Date:
Research Org.:
The Trustees of Boston College, Chestnut Hill, MA (United States) Massachusetts Institute of Technology, Cambridge, MA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1245410
Patent Number(s):
9,306,145
Application Number:
13/788,932
Assignee:
The Trustees of Boston College (Chestnut Hill, MA) Massachusetts Institute of Technology (Cambridge, MA) EFRC
DOE Contract Number:  
SC0001299
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Mar 07
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 77 NANOSCIENCE AND NANOTECHNOLOGY

Citation Formats

Ren, Zhifeng, Chen, Shuo, Liu, Wei-Shu, Wang, Hengzhi, Wang, Hui, Yu, Bo, and Chen, Gang. Methods of synthesizing thermoelectric materials. United States: N. p., 2016. Web.
Ren, Zhifeng, Chen, Shuo, Liu, Wei-Shu, Wang, Hengzhi, Wang, Hui, Yu, Bo, & Chen, Gang. Methods of synthesizing thermoelectric materials. United States.
Ren, Zhifeng, Chen, Shuo, Liu, Wei-Shu, Wang, Hengzhi, Wang, Hui, Yu, Bo, and Chen, Gang. Tue . "Methods of synthesizing thermoelectric materials". United States. doi:. https://www.osti.gov/servlets/purl/1245410.
@article{osti_1245410,
title = {Methods of synthesizing thermoelectric materials},
author = {Ren, Zhifeng and Chen, Shuo and Liu, Wei-Shu and Wang, Hengzhi and Wang, Hui and Yu, Bo and Chen, Gang},
abstractNote = {Methods for synthesis of thermoelectric materials are disclosed. In some embodiments, a method of fabricating a thermoelectric material includes generating a plurality of nanoparticles from a starting material comprising one or more chalcogens and one or more transition metals; and consolidating the nanoparticles under elevated pressure and temperature, wherein the nanoparticles are heated and cooled at a controlled rate.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Apr 05 00:00:00 EDT 2016},
month = {Tue Apr 05 00:00:00 EDT 2016}
}

Patent:

Save / Share:

Works referenced in this record:

Convergence of electronic bands for high performance bulk thermoelectrics
journal, May 2011

  • Pei, Yanzhong; Shi, Xiaoya; LaLonde, Aaron
  • Nature, Vol. 473, Issue 7345, p. 66-69
  • DOI: 10.1038/nature09996

Giant anharmonic phonon scattering in PbTe
journal, June 2011

  • Delaire, O.; Ma, J.; Marty, K.
  • Nature Materials, Vol. 10, Issue 8, p. 614-619
  • DOI: 10.1038/nmat3035

Thermoelectric Cooling and Power Generation
journal, July 1999


High-performance flat-panel solar thermoelectric generators with high thermal concentration
journal, May 2011

  • Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping
  • Nature Materials, Vol. 10, Issue 7, p. 532-538
  • DOI: 10.1038/nmat3013

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


New Directions for Low-Dimensional Thermoelectric Materials
journal, April 2007

  • Dresselhaus, M. S.; Chen, G.; Tang, M. Y.
  • Advanced Materials, Vol. 19, Issue 8, p. 1043-1053
  • DOI: 10.1002/adma.200600527

Recent advances in thermoelectric nanocomposites
journal, January 2012


High-temperature thermoelectric performance of heavily doped PbSe
journal, July 2010


Heavily Doped p-Type PbSe with High Thermoelectric Performance: An Alternative for PbTe
journal, February 2011

  • Wang, Heng; Pei, Yanzhong; LaLonde, Aaron D.
  • Advanced Materials, Vol. 23, Issue 11, p. 1366-1370
  • DOI: 10.1002/adma.201004200

Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide
journal, January 2012

  • Zhang, Qinyong; Wang, Hui; Liu, Weishu
  • Energy Environ. Sci., Vol. 5, Issue 1, p. 5246-5251
  • DOI: 10.1039/C1EE02465E

High-temperature thermoelectric properties of n-type PbSe doped with Ga, In, and Pb
journal, May 2011

  • Androulakis, John; Lee, Yeseul; Todorov, Iliya
  • Physical Review B, Vol. 83, Issue 19, Article No. 195209
  • DOI: 10.1103/PhysRevB.83.195209

Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features
journal, July 2010

  • Vineis, Christopher J.; Shakouri, Ali; Majumdar, Arun
  • Advanced Materials, Vol. 22, Issue 36, p. 3970-3980
  • DOI: 10.1002/adma.201000839

Complex thermoelectric materials
journal, February 2008

  • Snyder, G. Jeffrey; Toberer, Eric S.
  • Nature Materials, Vol. 7, Issue 2, p. 105-114
  • DOI: 10.1038/nmat2090

Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices
journal, June 1998


X-ray study of the average structures of Cu2Se and Cu1.8S in the room temperature and the high temperature phases
journal, July 1991


Ionic conductivity and chemical diffusion in Ag2SeCu2Se mixed conductor compounds
journal, January 1989

  • Yakshibayev, R. A.; Almukhametov, R. F.; Balapanov, M. Kh.
  • Solid State Ionics, Vol. 31, Issue 4, p. 247-251
  • DOI: 10.1016/0167-2738(89)90464-5

Silver(I) sulfide: Ag2S Heat capacity from 5 to 1000 K, thermodynamic properties, and transitions
journal, April 1986

  • Grønvold, Fredrik; Westrum, Edgar F.
  • The Journal of Chemical Thermodynamics, Vol. 18, Issue 4, p. 381-401
  • DOI: 10.1016/0021-9614(86)90084-4

Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit
journal, February 2004


Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States
journal, July 2008

  • Heremans, J. P.; Jovovic, V.; Toberer, E. S.
  • Science, Vol. 321, Issue 5888, p. 554-557
  • DOI: 10.1126/science.1159725