skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermoplastic Polyurethanes with Isosorbide Chain Extender

Journal Article · · Journal of Applied Polymer Science
DOI:https://doi.org/10.1002/app.42830· OSTI ID:1245017

Isosorbide, a renewable diol derived from starch, was used alone or in combination with butane diol (BD) as the chain extender in two series of thermoplastic polyurethanes (TPU) with 50 and 70% polytetramethylene ether glycol (PTMEG) soft segment concentration (SSC), respectively. In the synthesized TPUs, the hard segment composition was systematically varied in both series following BD/isosorbide molar ratios of 100 : 0; 75 : 25; 50 : 50; 25 : 75, and 0 : 100 to examine in detail the effect of chain extenders on properties of segmented polyurethane elastomers with different morphologies. We found that polyurethanes with 50% SSC were hard elastomers with Shore D hardness of around 50, which is consistent with assumed co-continuous morphology. Polymers with 70% SSC displayed lower Shore A hardness of 74–79 (Shore D around 25) as a result of globular hard domains dispersed in the soft matrix. Insertion of isosorbide increased rigidity, melting point and glass transition temperature of hard segments and tensile strength of elastomers with 50% SSC. These effects were weaker or non-existent in 70% SSC series due to the short hard segments and low content of isosorbide. We also found that the thermal stability was lowered by increasing isosorbide content in both series.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
DOE Contract Number:
AC02-06CH11357
OSTI ID:
1245017
Journal Information:
Journal of Applied Polymer Science, Vol. 132, Issue 47; ISSN 0021-8995
Publisher:
Wiley
Country of Publication:
United States
Language:
English