skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SHERPA User Conference.


Abstract not provided.

; ; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
OSTI Identifier:
Report Number(s):
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Proposed for presentation at the SHERPA User Conference held January 12-15, 2015 in Livermore, CA.
Country of Publication:
United States

Citation Formats

John, Charles Joseph, Burks, Lynne Schleiffarth, Teclemariam, Nerayo P, and Yang, Lynn I. SHERPA User Conference.. United States: N. p., 2015. Web.
John, Charles Joseph, Burks, Lynne Schleiffarth, Teclemariam, Nerayo P, & Yang, Lynn I. SHERPA User Conference.. United States.
John, Charles Joseph, Burks, Lynne Schleiffarth, Teclemariam, Nerayo P, and Yang, Lynn I. 2015. "SHERPA User Conference.". United States. doi:.
title = {SHERPA User Conference.},
author = {John, Charles Joseph and Burks, Lynne Schleiffarth and Teclemariam, Nerayo P and Yang, Lynn I.},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2015,
month = 1

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • In this talk, we report on a recent next-to-leading order QCD calculation of the production of a W boson in association with three jets at hadron colliders. The computation is performed by combining two programs, BlackHat for the computation of the virtual one-loop matrix elements and Sherpa for the real emission part. The addition of NLO corrections greatly reduces the factorization and renormalization scale dependence of the theory prediction for this process. This result demonstrates the applicability of unitarity-based methods for hadron collider physics.
  • We review recent NLO QCD results for W, Z + 3-jet production at hadron colliders, computing using BlackHat and SHERPA, and including also some new results for Z + 3-jet production for the LHC at 7 TeV. We report new progress towards the NLO cross section for W + 4-jet production. In particular, we show that the virtual matrix elements produced by BlackHat are numerically stable. We also show that with an improved integrator and tree-level matrix elements from BlackHat, SHERPA produces well-behaved real-emission contributions. As an illustration, we present the real-emission contributions - including dipole-subtraction terms - to themore » p{sub T} distribution of the fourth jet, for a single subprocess with the maximum number of gluons.« less
  • Some recent QCD-related developments in the SHERPA event generator are presented. In the past decades, event generators such as PYTHIA [1, 2] and HERWIG [3, 4] have been central for nearly all physics analyses at particle physics experiments at the high-energy frontier. This will also hold true at the LHC, where a large number of interesting signals for new particles or new phenomena (the Higgs boson or any other manifestation of the mechanism behind electro-weak symmetry breaking, supersymmetry, extra dimensions etc.) is hampered by a plethora of severe, sometimes overwhelming backgrounds. Nearly all of them are largely influenced by QCD.more » Therefore it seems fair to say that the success of the LHC in finding new physics may very well depend on a deep and detailed understanding of old physics, like QCD. Examples for this include, among others, the central-jet veto for the vector boson fusion channel for Higgs production or topologies, where gauge bosons emerge in association with many jets, a background for many search channels. In a reflection on increased needs by the experimental community, aiming at higher precision, incorporation of new physics models and so on, the work horses of old have undergone serious renovation efforts, resulting in new, improved versions of the respective codes, namely PYTHIA8 [5] and HERWIG++ [6]. In addition a completely new code, SHERPA [7], has been constructed and is in the process of maturing. The status of this code is the topic of this contribution. SHERPA's hallmark property is the inclusion of higher-order tree-level QCD contributions, leading to an improved modelling of jet production. They are introduced through a full-fledged matrix element generator, AMEGIC++ [8], which is capable of generating matrix elements and corresponding phase space mappings for processes with multi-particle final states in various models, including the Standard Model, anomalous gauge triple and quadruple couplings according to [9, 10], the Minimal Supersymmetric Standard Model with Feynman rules from [11], the ADD-model of extra dimensions [12, 13], and a model with an extra U(1) singlet coupling to the Higgs boson only [14]. The code has been thoroughly tested and validated [15]. This code, however, is limited, especially in the treatment of many ({ge} 6) external QCD particles. Therefore, in the near future, SHERPA will incorporate another, new matrix element generator, COMIX, which is based on Berends-Giele recursion relations [16] and color-dressing [17] rather than color-ordering. In Tabs. 1 and 2 some example cross sections for gg {yields} ng at fixed energies and pp {yields} b{bar b} + n jets obtained with this program are exhibited and compared to those from other programs. In addition, concerning the calculation of higher-order matrix elements and cross sections, there have been first steps towards an automation of such calculations at truly next-to leading order accuracy. They manifest themselves in the implementation of a procedure [19] to fully automatically construct and evaluate Catani-Seymour dipole subtraction terms [20] for the real part of such NLO calculations. The results from the matrix element calculations are merged with the subsequent parton shower through the formalism of [21, 22]. The results of its implementation in SHERPA [23] has recently been compared with other algorithms [24]. Although there remains some dispute about the theoretical equivalence of the different approaches, the overall results show satisfying agreement with each other, such that they can be used with confidence for data analysis.« less