skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Insights into the phylogeny and coding potential of microbial dark matter

Journal Article · · Nature (London)
DOI:https://doi.org/10.1038/nature12352· OSTI ID:1241193

Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells fromnine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called microbial dark matter. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20percent of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
1241193
Report Number(s):
LBNL-7080E
Journal Information:
Nature (London), Vol. 499, Issue 7459; ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English

Similar Records

Genomic expansion of Domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling
Journal Article · Sun Mar 01 00:00:00 EST 2015 · Current Biology, 25(6):690-701 · OSTI ID:1241193

Stop Codon Reassignment in the Wild
Conference · Fri Mar 21 00:00:00 EDT 2014 · OSTI ID:1241193

Microbial Dark Matter Phase II: Stepping deeper into unknown territory
Conference · Mon Oct 27 00:00:00 EDT 2014 · OSTI ID:1241193

Related Subjects