skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Terahertz-driven linear electron acceleration

Abstract

The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.

Authors:
 [1];  [1];  [1];  [1];  [2];  [3];  [4];  [5]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Hamburg Center for Ultrafast Imaging, Hamburg (Germany); German Electron Synchrotron, Hamburg (Germany)
  3. Univ. of Toronto, Toronto, ON (Canada)
  4. German Electron Synchrotron, Hamburg (Germany); Univ. of Toronto, Toronto, ON (Canada); Max Planck Inst. for Structure and Dynamics of Matter, Hamburg (Germany)
  5. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Hamburg Center for Ultrafast Imaging, Hamburg (Germany); German Electron Synchrotron, Hamburg (Germany); Univ. of Hamburg, Hamburg (Germany)
Publication Date:
Research Org.:
Massachusetts Institute of Technology, Cambridge, MA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1239324
Grant/Contract Number:  
FG02-08ER41532
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; physical sciences; optical physics; fluids and plasma physics

Citation Formats

Nanni, Emilio A., Huang, Wenqian R., Hong, Kyung-Han, Ravi, Koustuban, Fallahi, Arya, Moriena, Gustavo, Dwayne Miller, R. J., and Kärtner, Franz X. Terahertz-driven linear electron acceleration. United States: N. p., 2015. Web. doi:10.1038/ncomms9486.
Nanni, Emilio A., Huang, Wenqian R., Hong, Kyung-Han, Ravi, Koustuban, Fallahi, Arya, Moriena, Gustavo, Dwayne Miller, R. J., & Kärtner, Franz X. Terahertz-driven linear electron acceleration. United States. doi:10.1038/ncomms9486.
Nanni, Emilio A., Huang, Wenqian R., Hong, Kyung-Han, Ravi, Koustuban, Fallahi, Arya, Moriena, Gustavo, Dwayne Miller, R. J., and Kärtner, Franz X. Tue . "Terahertz-driven linear electron acceleration". United States. doi:10.1038/ncomms9486. https://www.osti.gov/servlets/purl/1239324.
@article{osti_1239324,
title = {Terahertz-driven linear electron acceleration},
author = {Nanni, Emilio A. and Huang, Wenqian R. and Hong, Kyung-Han and Ravi, Koustuban and Fallahi, Arya and Moriena, Gustavo and Dwayne Miller, R. J. and Kärtner, Franz X.},
abstractNote = {The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm-1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.},
doi = {10.1038/ncomms9486},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 6,
place = {United States},
year = {2015},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 82 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Terahertz-driven linear accelerator. (a) Schematic of the THz LINAC. Top right: a linearly polarized THz pulse is converted into a radially polarized pulse by a segmented waveplate before being focused into the THz waveguide. The THz pulse is reflected at the end of the waveguide to co-propagate withmore » the electron bunch, which enters the waveguide through a pinhole (lower left). The electron bunch is accelerated by the longitudinal electric field of the co-propagating THz pulse. The electron bunch exits the THz waveguide and passes through a hole in the focusing mirror (right) for the THz pulse. (b) Photograph of the compact millimetre scale THz LINAC. (c) The time-domain waveform of the THz pulse determined with electro-optic sampling (see Methods: Electro-optic sampling). Insert: corresponding frequency-domain spectrum. (d) The time-domain waveform of the THz pulse at the exit of a THz waveguide 5 cm in length, including two tapers. (e) Normalized intensity of the focused THz beam.« less

Save / Share:

Works referenced in this record:

Visible-Laser Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum
journal, September 2005


Acceleration of ultra-relativistic electrons using high-intensity TM01 laser beams
journal, June 2002


Generation of 09-mJ THz pulses in DSTMS pumped by a Cr:Mg_2SiO_4 laser
journal, January 2014

  • Vicario, C.; Ovchinnikov, A. V.; Ashitkov, S. I.
  • Optics Letters, Vol. 39, Issue 23
  • DOI: 10.1364/OL.39.006632

Design theory of dielectric-coated circular metallic waveguides for infrared transmission
journal, January 1984


Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse
journal, July 2012

  • Payeur, S.; Fourmaux, S.; Schmidt, B. E.
  • Applied Physics Letters, Vol. 101, Issue 4
  • DOI: 10.1063/1.4738998

A compact X-ray free-electron laser emitting in the sub-ångström region
journal, June 2012


High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate
journal, January 2013

  • Huang, Shu-Wei; Granados, Eduardo; Huang, Wenqian Ronny
  • Optics Letters, Vol. 38, Issue 5
  • DOI: 10.1364/OL.38.000796

Near-GeV Acceleration of Electrons by a Nonlinear Plasma Wave Driven by a Self-Guided Laser Pulse
journal, July 2009


First lasing and operation of an ångstrom-wavelength free-electron laser
journal, August 2010


Linear to radial polarization conversion in the THz domain using a passive system
journal, January 2008


Highly nonlinear As–S–Se glasses for all-optical switching
journal, January 2002

  • Harbold, J. M.; Ilday, F. Ö.; Wise, F. W.
  • Optics Letters, Vol. 27, Issue 2
  • DOI: 10.1364/OL.27.000119

Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers
journal, January 2015

  • Zapata, Luis E.; Lin, Hua; Calendron, Anne-Laure
  • Optics Letters, Vol. 40, Issue 11
  • DOI: 10.1364/OL.40.002610

Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser
journal, January 2012

  • Reagan, Brendan A.; Wernsing, Keith A.; Curtis, Alden H.
  • Optics Letters, Vol. 37, Issue 17
  • DOI: 10.1364/OL.37.003624

Compact electron acceleration and bunch compression in THz waveguides
journal, January 2013

  • Wong, Liang Jie; Fallahi, Arya; Kärtner, Franz X.
  • Optics Express, Vol. 21, Issue 8
  • DOI: 10.1364/OE.21.009792

Laser-Based Acceleration of Nonrelativistic Electrons at a Dielectric Structure
journal, September 2013


A laser–plasma accelerator producing monoenergetic electron beams
journal, September 2004


Stable generation of GeV-class electron beams from self-guided laser–plasma channels
journal, August 2008


High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding
journal, September 2004

  • Geddes, C. G. R.; Toth, Cs.; van Tilborg, J.
  • Nature, Vol. 431, Issue 7008
  • DOI: 10.1038/nature02900

Criterion for Vacuum Sparking Designed to Include Both rf and dc
journal, October 1957

  • Kilpatrick, W. D.
  • Review of Scientific Instruments, Vol. 28, Issue 10
  • DOI: 10.1063/1.1715731

Evanescent-wave proton postaccelerator driven by intense THz pulse
journal, March 2014

  • Pálfalvi, L.; Fülöp, J. A.; Tóth, Gy.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 17, Issue 3
  • DOI: 10.1103/PhysRevSTAB.17.031301

Proposed dielectric-based microstructure laser-driven undulator
journal, March 2008


Demonstration of electron acceleration in a laser-driven dielectric microstructure
journal, November 2013

  • Peralta, E. A.; Soong, K.; England, R. J.
  • Nature, Vol. 503, Issue 7474
  • DOI: 10.1038/nature12664

Generation of high power tunable multicycle teraherz pulses
journal, August 2011

  • Chen, Zhao; Zhou, Xibin; Werley, Christopher A.
  • Applied Physics Letters, Vol. 99, Issue 7
  • DOI: 10.1063/1.3624919

Terahertz-induced Kerr effect in amorphous chalcogenide glasses
journal, November 2013

  • Zalkovskij, M.; Strikwerda, A. C.; Iwaszczuk, K.
  • Applied Physics Letters, Vol. 103, Issue 22
  • DOI: 10.1063/1.4832825

Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation
journal, January 2003


Terahertz control of nanotip photoemission
journal, May 2014

  • Wimmer, L.; Herink, G.; Solli, D. R.
  • Nature Physics, Vol. 10, Issue 6
  • DOI: 10.1038/nphys2974

Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power
journal, November 2005

  • Yoder, R. B.; Rosenzweig, J. B.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 8, Issue 11
  • DOI: 10.1103/PhysRevSTAB.8.111301

Breakdown Limits on Gigavolt-per-Meter Electron-Beam-Driven Wakefields in Dielectric Structures
journal, May 2008


Reducing Transmission Losses in Hollow THz Waveguides
journal, September 2011

  • Mitrofanov, Oleg; James, Richard; Fernandez, F. Aníbal
  • IEEE Transactions on Terahertz Science and Technology, Vol. 1, Issue 1
  • DOI: 10.1109/TTHZ.2011.2159547

Reformulation of the standard theory of Fowler–Nordheim tunnelling and cold field electron emission
journal, August 2007

  • Forbes, Richard G.; Deane, Jonathan H. B.
  • Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 463, Issue 2087
  • DOI: 10.1098/rspa.2007.0030

    Works referencing / citing this record:

    Terahertz-driven linear electron acceleration
    text, January 2015

    • Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2015-03988

    Resonant plasma excitation by single-cycle THz pulses
    journal, January 2018


    Toward a terahertz-driven electron gun
    journal, October 2015

    • Huang, W. Ronny; Nanni, Emilio A.; Ravi, Koustuban
    • Scientific Reports, Vol. 5, Issue 1
    • DOI: 10.1038/srep14899

    Simulation of a concept for a compact ultrafast X-ray pulse source based on RF and THz technologies
    journal, April 2019

    • Vinatier, T.; Assmann, R. W.; Dorda, U.
    • Journal of Applied Physics, Vol. 125, Issue 16
    • DOI: 10.1063/1.5091109

    Optical generation of single-cycle 10 MW peak power 100 GHz waves
    journal, January 2016

    • Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban
    • Optics Express, Vol. 24, Issue 18
    • DOI: 10.1364/oe.24.021059

    Analysis of terahertz generation using tilted pulse fronts
    journal, January 2019


    Simultaneous generation and compression of broadband terahertz pulses in aperiodically poled crystals
    journal, January 2019


    Terahertz-driven, all-optical electron gun
    journal, January 2016


    Terahertz-driven, sub-keV electron gun
    conference, January 2016

    • Huang, W. Ronny; Fallahi, Arya; Wu, Xiaojun
    • CLEO: Science and Innovations, Conference on Lasers and Electro-Optics
    • DOI: 10.1364/cleo_si.2016.sm4l.1

    Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation
    journal, June 2019


    Femtosecond phase control in high-field terahertz-driven ultrafast electron sources
    journal, January 2019


    Resonant plasma excitation by single-cycle THz pulses
    journal, January 2018


    Toward a terahertz-driven electron gun
    journal, October 2015

    • Huang, W. Ronny; Nanni, Emilio A.; Ravi, Koustuban
    • Scientific Reports, Vol. 5, Issue 1
    • DOI: 10.1038/srep14899

    Simulation of a concept for a compact ultrafast X-ray pulse source based on RF and THz technologies
    journal, April 2019

    • Vinatier, T.; Assmann, R. W.; Dorda, U.
    • Journal of Applied Physics, Vol. 125, Issue 16
    • DOI: 10.1063/1.5091109

    Optical generation of single-cycle 10 MW peak power 100 GHz waves
    journal, January 2016

    • Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban
    • Optics Express, Vol. 24, Issue 18
    • DOI: 10.1364/oe.24.021059

    Analysis of terahertz generation using tilted pulse fronts
    journal, January 2019


    Simultaneous generation and compression of broadband terahertz pulses in aperiodically poled crystals
    journal, January 2019


    Terahertz-driven, all-optical electron gun
    text, January 2016

    • Huang, Wenqian; Fallahi, Arya; Wu, Xiaojun
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2016-04408

    Femtosecond phase control in high-field terahertz-driven ultrafast electron sources
    text, January 2019

    • Zhang, Dongfang; Fallahi, Arya; Hemmer, Michael
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2019-02569

    Spectral phase control of interfering chirped pulses for high-energy narrowband terahertz generation
    text, January 2019

    • Jolly, Spencer W.; Matlis, Nicholas H.; Ahr, Frederike
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2019-04464

    Cascaded Multicycle Terahertz-Driven Ultrafast Electron Acceleration and Manipulation
    journal, March 2020


    Gouy phase shift of a tightly focused, radially polarized beam
    journal, January 2016

    • Kaltenecker, Korbinian J.; König-Otto, Jacob C.; Mittendorff, Martin
    • Optica, Vol. 3, Issue 1
    • DOI: 10.1364/optica.3.000035

    Femtosecond phase control in high-field terahertz-driven ultrafast electron sources
    journal, January 2019


    Toward a terahertz-driven electron gun
    text, January 2015

    • Huang, W. Ronny; Nanni, Emilio A.; Ravi, Koustuban
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2016-00197

    Optical generation of single-cycle 10 MW peak power 100 GHz waves
    text, January 2016

    • Wu, Xiaojun; Calendron, Anne-Laure; Ravi, Koustuban
    • Deutsches Elektronen-Synchrotron, DESY, Hamburg
    • DOI: 10.3204/pubdb-2016-03391

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.