skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: COLOCATED KIVA-4

Authors:
 [1]
  1. Los Alamos National Laboratory
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1237206
Report Number(s):
LA-UR-07-1337
DOE Contract Number:
AC52-06NA25396
Resource Type:
Conference
Resource Relation:
Conference: INTERNATIONAL MULTIDIMENSIONAL ENGINE MODELING USER'S GROUP MEETING ; 200704 ; DETROIT
Country of Publication:
United States
Language:
English

Citation Formats

TORRES, DAVID J. COLOCATED KIVA-4. United States: N. p., 2007. Web.
TORRES, DAVID J. COLOCATED KIVA-4. United States.
TORRES, DAVID J. Tue . "COLOCATED KIVA-4". United States. doi:. https://www.osti.gov/servlets/purl/1237206.
@article{osti_1237206,
title = {COLOCATED KIVA-4},
author = {TORRES, DAVID J.},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Feb 27 00:00:00 EST 2007},
month = {Tue Feb 27 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, and refabrication functions in a singlemore » facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years.« less
  • As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design, capital and operating cost estimates, and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, andmore » refabrication functions in a single facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years.« less
  • Since its public release in 1985, the KIVA computer program has been used for the time dependent analysis of chemically reacting flows with sprays in two and three space dimensions. This paper describes some of the improvements to the original version that have been made since that time. The new code, called KIVA-II, is planned for public release in early 1988. KIVA-II improves the earlier version in the accuracy and efficiency of the computational procedure, the accuracy of the physics submodels, and in versatility and ease of use. Numerical improvements include the use of the ICE solution procedure in placemore » of the acoustic subcycling method and the implementation of a quasi-second-order-accurate convection scheme. Major extensions to the physical submodels include the inclusion of an optical kappa-epsilon turbulence model, and several additions to the spray model. The authors illustrate some of the new capabilities by means of example solutions.« less
  • Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approachmore » their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.« less
  • Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-Amore » thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.« less