skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In situ calibration of a light source in a sensor device

Abstract

A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.

Inventors:
; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1234215
Patent Number(s):
9,222,810
Application Number:
14/031,863
Assignee:
Sandia Corporation SNL-A
DOE Contract Number:
AC04-94AL85000
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Sep 19
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 58 GEOSCIENCES

Citation Formats

Okandan, Murat, Serkland, Darwin k., and Merchant, Bion J. In situ calibration of a light source in a sensor device. United States: N. p., 2015. Web.
Okandan, Murat, Serkland, Darwin k., & Merchant, Bion J. In situ calibration of a light source in a sensor device. United States.
Okandan, Murat, Serkland, Darwin k., and Merchant, Bion J. Tue . "In situ calibration of a light source in a sensor device". United States. doi:. https://www.osti.gov/servlets/purl/1234215.
@article{osti_1234215,
title = {In situ calibration of a light source in a sensor device},
author = {Okandan, Murat and Serkland, Darwin k. and Merchant, Bion J.},
abstractNote = {A sensor device is described herein, wherein the sensor device includes an optical measurement system, such as an interferometer. The sensor device further includes a low-power light source that is configured to emit an optical signal having a constant wavelength, wherein accuracy of a measurement output by the sensor device is dependent upon the optical signal having the constant wavelength. At least a portion of the optical signal is directed to a vapor cell, the vapor cell including an atomic species that absorbs light having the constant wavelength. A photodetector captures light that exits the vapor cell, and generates an electrical signal that is indicative of intensity of the light that exits the vapor cell. A control circuit controls operation of the light source based upon the electrical signal, such that the light source emits the optical signal with the constant wavelength.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Dec 29 00:00:00 EST 2015},
month = {Tue Dec 29 00:00:00 EST 2015}
}

Patent:

Save / Share:
  • A device for correcting measuring values of a group of radiation detectors for measuring the intensity or distribution of radiation, comprising an additional radiation source for direct irradiation of the detectors is described. The radiation of the said additional radiation source can be switched on each time when the radiation to be measured is not incident on the radiation detectors. The device furthermore comprises a calculating device which forms for each radiation detector the quotient of the measuring value (M1(x)) and the reference measuring value (M2(x)) of the radiation detectors when exposed to the radiation of the additional radiation source.
  • At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.
  • This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surfacemore » of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.« less
  • This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface ofmore » an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.« less
  • This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material ontomore » the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.« less