skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Final Report: Seismic Hazard Assessment at the PGDP

Abstract

Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

Authors:
 [1]
  1. KY Geological Survey, Univ of KY
Publication Date:
Research Org.:
Kentucky Research Consortium for Energy and Environment, University of Kentucky, Lexington, KY
Sponsoring Org.:
USDOE Office of Environmental Management (EM)
OSTI Identifier:
1233309
Report Number(s):
UK/KRCEE Doc #: 11.6 2007
UK/KRCEE doc#: 11.6 2007
DOE Contract Number:
FG05-03OR23032
Resource Type:
Other
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; Paducah gaseous diffusion seismic hazard New Madrid Paducah assessment

Citation Formats

Wang, Zhinmeng. Final Report: Seismic Hazard Assessment at the PGDP. United States: N. p., 2007. Web.
Wang, Zhinmeng. Final Report: Seismic Hazard Assessment at the PGDP. United States.
Wang, Zhinmeng. Fri . "Final Report: Seismic Hazard Assessment at the PGDP". United States. doi:. https://www.osti.gov/servlets/purl/1233309.
@article{osti_1233309,
title = {Final Report: Seismic Hazard Assessment at the PGDP},
author = {Wang, Zhinmeng},
abstractNote = {Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Jun 01 00:00:00 EDT 2007},
month = {Fri Jun 01 00:00:00 EDT 2007}
}
  • Paducah Gaseous Diffusion Plant (PGDP) performed an evaluation of the PGDP facilities to determine the feasibility of increasing product assay from 2.0 wt % to 5.0 wt % /sup 235/U and to determine the impact of this increase on plant criticality safety; their conclusions are reported in KY-710. This report critiques the methods used and conclusions reached in KY-710. 4 figures, 5 tables.
  • This report provides technical information to determine the lower-bound earthquake magnitude (LBM) for use in probabilistic seismic hazard (PSH) computations that are applied to nuclear plant applications. The evaluations consider the seismologic characteristics of earthquake experience at similar facilities and insights from probabilistic risk analysis. The recommendations for LBM satisfy the two basic precepts: (1) there is a reasonable engineering assurance that the likelihood of damage due to earthquakes smaller than the LBM is negligible, and (2) any small risk due to earthquakes smaller than the LBM is compensated by conservatisms in PSH results for larger earthquakes. Theoretical and empiricalmore » ground motion studies demonstrate that ground shaking duration and spectral shape are a strong function of earthquake magnitude. Small earthquakes have short duration and spectral shapes centered at high frequencies as compared to nuclear power plant design spectra which are typical of moderate and large earthquakes. Analysis of earthquake experience data shows damage to heavy industrial facilities, taken as analogs to nuclear plant structures and components, occurs for earthquakes having moment magnitude M larger than 5.1. Probabilistic seismic risk and margins studies show nuclear plant structures and adequately anchored ductile components to be rugged for moderate-size earthquakes with broad design-type spectral shapes. They may, therefore, be considered rugged for small earthquakes. Finally, nonlinear analysis of the damage effectiveness of strong-motion recordings shows that potential damage does not occur for earthquakes smaller than about M5.6. These results support a conservative LBM of M5.0 for application to nuclear power plant PSH assessments. 144 refs., 78 figs., 34 tabs.« less
  • Conservatism and variability in seismic risk estimates are studied: effects of uniform hazard spectrum (UHS) are examined for deriving probabilistic estimates of risk and in-structure demand levels, as compared to the more-exact use of realistic time history inputs (of given probability) that depend explicitly on magnitude and distance. This approach differs from the conventional in its exhaustive treatment of the ground-motion threat and in its more detailed assessment of component responses to that threat. The approximate UH-ISS (in-structure spectrum) obtained based on UHS appear to be very close to the more-exact results directed computed from scenario earthquakes. This conclusion doesmore » not depend on site configurations and structural characteristics. Also, UH-ISS has composite shapes and may not correspond to the characteristics possessed a single earthquake. The shape is largely affected by the structural property in most cases and can be derived approximately from the corresponding UHS. Motions with smooth spectra, however, will not have the same damage potential as those of more realistic motions with jagged spectral shapes. As a result, UHS-based analysis may underestimate the real demands in nonlinear structural analyses.« less
  • Probabilistic Seismic Hazard Assessments (PSHA) form the basis for most contemporary seismic provisions in building codes around the world. The current building code of Iraq was published in 1997. An update to this edition is in the process of being released. However, there are no national PSHA studies in Iraq for the new building code to refer to for seismic loading in terms of spectral accelerations. As an interim solution, the new draft building code was considering to refer to PSHA results produced in the late 1990s as part of the Global Seismic Hazard Assessment Program (GSHAP; Giardini et al.,more » 1999). However these results are: a) more than 15 years outdated, b) PGA-based only, necessitating rough conversion factors to calculate spectral accelerations at 0.3s and 1.0s for seismic design, and c) at a probability level of 10% chance of exceedance in 50 years, not the 2% that the building code requires. Hence there is a pressing need for a new, updated PSHA for Iraq.« less
  • Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporatesmore » deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.« less