skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Static Scale Conversion (SSC)

Abstract

The Static Scale Conversion (SSC) software is a unique enhancement to the AIMVEE system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale. Included in the software is the AIMVEE computer code base. The SSC and AIMVEE computer system electronically continue to retrieve deployment information, identify vehicle automatically and determine total weight, individual axle weights, axle spacing and center-of-balance for any wheeled vehicle in motion. The AIMVEE computer code system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE computer code system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information is stored, it electronically links to data collection and dissemination systems to provide “actual” weight and measurement information for planning, deployment, and in-transit visibility.

Publication Date:
Research Org.:
Oak Ridge National Laboratory
Sponsoring Org.:
USDOE
OSTI Identifier:
1231357
Report Number(s):
SSC; 002544MLTPL00
DOE Contract Number:
DE-AC05-00OR22725
Resource Type:
Software
Software Revision:
00
Software Package Number:
002544
Software Package Contents:
Media Directory; Software Abstract; Media includes Source Code;/ 1 CD ROM
Software CPU:
MLTPL
Open Source:
No
Source Code Available:
Yes
Country of Publication:
United States

Citation Formats

. Static Scale Conversion (SSC). Computer software. Vers. 00. USDOE. 19 Jan. 2007. Web.
. (2007, January 19). Static Scale Conversion (SSC) (Version 00) [Computer software].
. Static Scale Conversion (SSC). Computer software. Version 00. January 19, 2007.
@misc{osti_1231357,
title = {Static Scale Conversion (SSC), Version 00},
author = {},
abstractNote = {The Static Scale Conversion (SSC) software is a unique enhancement to the AIMVEE system. It enables a SSC to weigh and measure vehicles and cargo dynamically (i.e., as they pass over the large scale. Included in the software is the AIMVEE computer code base. The SSC and AIMVEE computer system electronically continue to retrieve deployment information, identify vehicle automatically and determine total weight, individual axle weights, axle spacing and center-of-balance for any wheeled vehicle in motion. The AIMVEE computer code system can also perform these functions statically for both wheel vehicles and cargo with information. The AIMVEE computer code system incorporates digital images and applies cubing algorithms to determine length, width, height for cubic dimensions of both vehicle and cargo. Once all this information is stored, it electronically links to data collection and dissemination systems to provide “actual” weight and measurement information for planning, deployment, and in-transit visibility.},
doi = {},
year = {Fri Jan 19 00:00:00 EST 2007},
month = {Fri Jan 19 00:00:00 EST 2007},
note =
}

Software:
To order this software, request consultation services, or receive further information, please fill out the following request.

Save / Share:
  • In support of the Air Mobility Battle Lab (AMBL), the Defense Advanced Research Projects Agency (DARPA) Advanced Logistics Program and the U. S. Transportation Command (USTRANSCOM), the ultimate objective of this project is to develop and demonstrate a full-scale prototype static scale conversion weigh-in-motion/Profilometry (SSC-WIM/P) system to measure and record dimensional and weight information for the Department of Defense (DoD) equipment and cargo. The Oak Ridge National Laboratory (ORNL), along with the AMBL, and Intercomp, Inc. have developed a long-range plan for developing a dual-use system which can be used as a standard static scale or an accurate weigh-in-motion system.more » AMBL will work to define requirements for additional activities with U.S. Transportation Command, Air Mobility Command, and the Joint Warfighting Battle Lab for both the SSC-WIM/P and a portable Weigh-in-Motion System for individual units. The funding goal is to fully fund the development of two prototype test articles (a SSC-WIM kit, and a laser profilometer) and have at least one fully operational system by the early 2002 timeframe. The objective of this portion of the project will be to develop a SSC-WIM system, which at a later date can be fully integrated with a profilometry system; to fully characterize DOD wheeled vehicles and cargo (individual axle weights, total vehicle weight, center of balance, height, width and length measurements). The program will be completed in phases with the initial AMBL/DARPA funding being used to initiate the efforts while AMBL/USTC obtains funding to complete the first generation system effort. At the completion of an initial effort, the interface hardware and the data acquisition/analysis hardware will be developed, fabricated, and system principles and basic functionality evaluated, tested, and demonstrated. Additional funding, when made available, will allow the successful completion of a first generation prototype system. This effort will be followed by a fully optimized system to be developed, tested and made ready for commercialization in the FY-2002 timeframe. A further objective of this program will be to bring several DOD organizations together for a common goal, leverage private industry resources and funds, and utilize Tennessee Department of Transportation facilities and support personnel to augment the cost of testing and evaluation activities performed by ORNL. The specific objectives of this initial program were to: (1) Define, develop, and fabricate the initial building block system hardware and software, (2) Demonstrate system principles and basic functionality while interfacing with representative static scales and thereby, validate the static scale conversion concept, (3) Survey up to eight prominent Army and Air Force power projection bases for type and design of the existing static scales and determine if the scales can be converted to a SSC-WIM system, and (4) Document these efforts and findings in a final report and provide cost, schedule, and performance planning data for a follow-on production program.« less
  • The design of the Cold Mass(CM) of superconducting magnets at the Magnet Systems Division(MSD) of the Superconducting Super Collider Laboratory(SSCL) involves among others the optimization of field quality and structural performance as related to the quench behavior of the magnets. It is desirable to be able to study the changes in field quality due to dimensional changes of the cold mass components under stress as the magnet is cooled and energized. This document describes a software package of functions which enable the computer aided study of this aspect of cold mass design. 9 refs., 6 figs., 1 tab.
  • We review the issues related to software development for the Superconducting Super Collider. These include the methods for software design as well as the use of specific software technologies and commercial products. 11 refs.
  • To adequately simulate the physics and control of a complex accelerator requires a substantial number of programs which must present a uniform interface to both the user and the internal representation of the accelerator. If these programs are to be truly modular, so that their use can be orchestrated as needed, the specification of both their graphical and data interfaces must be carefully designed. We describe the state of such SSC simulation software, with emphasis on addressing these uniform interface needs by using a standardized data set format and object-oriented approaches to graphics and modeling. 12 refs.
  • Small-scale safety testing of explosives and other energetic materials is done in order to determine their sensitivity to various stimuli, such as friction, static spark, and impact. Typically this testing is done to discover potential handling problems that may exist for either newly synthesized materials of unknown behavior, or materials that have been stored for long periods of time. This report describes the existing ''Static Spark Test Apparatus'' at Lawrence Livermore National Laboratory (LLNL), as well as the method used to evaluate the relative static spark sensitivity of energetic materials. The basic design, originally developed by the Picatinny Arsenal inmore » New Jersey, is discussed. The accumulated data for the materials tested to date is not included here, with the exception of specific examples that have yielded interesting or unusual results during the tests.« less

To initiate an order for this software, request consultation services, or receive further information, fill out the request form below. You may also reach us by email at: .

OSTI staff will begin to process an order for scientific and technical software once the payment and signed site license agreement are received. If the forms are not in order, OSTI will contact you. No further action will be taken until all required information and/or payment is received. Orders are usually processed within three to five business days.

Software Request

(required)
(required)
(required)
(required)
(required)
(required)
(required)
(required)