skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: X-ray Mapping of Nanoparticle Superlattice Thin Films

Journal Article · · ACS Nano
DOI:https://doi.org/10.1021/nn5062832· OSTI ID:1229514

We combine grazing-incidence and transmission small-angle X-ray diffraction with electron microscopy studies to characterize the structure of nanoparticle films with long-range order. Transmission diffraction is used to collect in-plane diffraction data from single grains and locally aligned nanoparticle superlattice films. Systematic mapping of samples can be achieved by translating the sample in front of the X-ray beam with a spot size selected to be on the order of superlattice grain features. This allows a statistical determination of superlattice grain size and size distribution over much larger areas than typically accessible with electron microscopy. Transmission X-ray measurements enables spatial mapping of the grain size, orientation, uniformity, strain, or crystal projections and polymorphs. Furthermore, we expand this methodology to binary nanoparticle superlattice and nanorod superlattice films. Our study provides a framework for characterization of nanoparticle superlattices over large areas which complements or expands microstructure information from real-space imaging.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
SC00112704
OSTI ID:
1229514
Report Number(s):
BNL-111590-2015-JA
Journal Information:
ACS Nano, Vol. 8, Issue 12; ISSN 1936-0851
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English

Similar Records

Synthesis of Cu{sub 2}ZnSnS{sub 4} nanoparticles and controlling the morphology with polyethylene glycol
Journal Article · Sun May 15 00:00:00 EDT 2016 · Materials Research Bulletin · OSTI ID:1229514

Active learning of polarizable nanoparticle phase diagrams for the guided design of triggerable self-assembling superlattices
Journal Article · Mon Jan 24 00:00:00 EST 2022 · Molecular Systems Design & Engineering · OSTI ID:1229514

Facile sonochemical synthesis and photoluminescent properties of lanthanide orthophosphate nanoparticles
Journal Article · Sun Feb 15 00:00:00 EST 2009 · Journal of Solid State Chemistry · OSTI ID:1229514