skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrafast visualization of crystallization and grain growth in shock-compressed SiO 2

Abstract

Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.

Authors:
 [1];  [1];  [2];  [2];  [2];  [2];  [3];  [4];  [4];  [4];  [4];  [1];  [5];  [6]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Washington State Univ., Pullman, WA (United States)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. Carnegie Institution of Washington, Argonne, IL (United States); Center for High Pressure Science and Technology Advanced Research, Shanghai (China)
  6. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., Stanford, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1227897
Alternate Identifier(s):
OSTI ID: 1240132
Report Number(s):
LA-UR-15-25589
Journal ID: ISSN 2041-1723; ncomms9191
Grant/Contract Number:  
AC52-06NA25396; AC03-76SF00515
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 36 MATERIALS SCIENCE; physical sciences; materials science; condensed matter; geology and geophysics

Citation Formats

Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Milathianaki, D., Hawreliak, J., Kraus, R. G., Eggert, J. H., Fratanduono, D. E., Collins, G. W., Sandberg, R., Yang, W., and Mao, W. L. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. United States: N. p., 2015. Web. doi:10.1038/ncomms9191.
Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Milathianaki, D., Hawreliak, J., Kraus, R. G., Eggert, J. H., Fratanduono, D. E., Collins, G. W., Sandberg, R., Yang, W., & Mao, W. L. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. United States. doi:10.1038/ncomms9191.
Gleason, A. E., Bolme, C. A., Lee, H. J., Nagler, B., Galtier, E., Milathianaki, D., Hawreliak, J., Kraus, R. G., Eggert, J. H., Fratanduono, D. E., Collins, G. W., Sandberg, R., Yang, W., and Mao, W. L. Fri . "Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2". United States. doi:10.1038/ncomms9191. https://www.osti.gov/servlets/purl/1227897.
@article{osti_1227897,
title = {Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2},
author = {Gleason, A. E. and Bolme, C. A. and Lee, H. J. and Nagler, B. and Galtier, E. and Milathianaki, D. and Hawreliak, J. and Kraus, R. G. and Eggert, J. H. and Fratanduono, D. E. and Collins, G. W. and Sandberg, R. and Yang, W. and Mao, W. L.},
abstractNote = {Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. As a result, these are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD.},
doi = {10.1038/ncomms9191},
journal = {Nature Communications},
issn = {2041-1723},
number = ,
volume = 6,
place = {United States},
year = {2015},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 23 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Recent Work in the Field of High Pressures
journal, January 1946


High Pressure Polymorphism of Iron
journal, June 1956

  • Bridgman, P. W.
  • Journal of Applied Physics, Vol. 27, Issue 6
  • DOI: 10.1063/1.1722456

Polymorphism of Iron at High Pressure
journal, March 1956

  • Bancroft, Dennison; Peterson, Eric L.; Minshall, Stanley
  • Journal of Applied Physics, Vol. 27, Issue 3
  • DOI: 10.1063/1.1722359

Nanosecond freezing of water under multiple shock wave compression: Continuum modeling and wave profile measurements
journal, August 2005

  • Dolan, D. H.; Johnson, J. N.; Gupta, Y. M.
  • The Journal of Chemical Physics, Vol. 123, Issue 6
  • DOI: 10.1063/1.1993556

First X-Ray Diffraction Evidence for a Phase Transition during Shock-Wave Compression
journal, November 1972


Experimental developments to obtain real-time x-ray diffraction measurements in plate impact experiments
journal, October 1999

  • Gupta, Y. M.; Zimmerman, K. A.; Rigg, P. A.
  • Review of Scientific Instruments, Vol. 70, Issue 10
  • DOI: 10.1063/1.1150026

Shock induced phase change in KCl single crystals: Orientation relations between the B1 and B2 lattices
journal, January 2009

  • Turneaure, Stefan J.; Gupta, Y. M.; Rigg, Paulo
  • Journal of Applied Physics, Vol. 105, Issue 1
  • DOI: 10.1063/1.3065522

Shock launching in silicon studied with use of pulsed x-ray diffraction
journal, June 1987


Direct Observation of the α ε Transition in Shock-Compressed Iron via Nanosecond X-Ray Diffraction
journal, August 2005


Analysis of the x-ray diffraction signal for the α ϵ transition in shock-compressed iron: Simulation and experiment
journal, November 2006


High-pressure nanocrystalline structure of a shock-compressed single crystal of iron
journal, December 2008

  • Hawreliak, James A.; Kalantar, Daniel H.; Stölken, James S.
  • Physical Review B, Vol. 78, Issue 22
  • DOI: 10.1103/PhysRevB.78.220101

Real-time microstructure of shock-compressed single crystals from X-ray diffraction line profiles
journal, May 2011


Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter
journal, October 2013


Anomalous Elastic Response of Silicon to Uniaxial Shock Compression on Nanosecond Time Scales
journal, March 2001


Direct measurements of the α-ϵ transition stress and kinetics for shocked iron
journal, May 2009

  • Jensen, B. J.; Gray, G. T.; Hixson, R. S.
  • Journal of Applied Physics, Vol. 105, Issue 10
  • DOI: 10.1063/1.3110188

In situ x-ray diffraction measurements of the c / a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron
journal, April 2011


High-pressure x-ray diffraction of SiO 2 glass
journal, August 1992


The Effect of Cold‐Work Distortion on X‐Ray Patterns
journal, June 1950

  • Warren, B. E.; Averbach, B. L.
  • Journal of Applied Physics, Vol. 21, Issue 6
  • DOI: 10.1063/1.1699713

Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories
journal, June 2009


Coarsening of grain-boundary precipitates
journal, October 1971


Microscopic View of Structural Phase Transitions Induced by Shock Waves
journal, May 2002


Nanocrystallization of amorphous germanium films observed with nanosecond temporal resolution
journal, November 2010

  • Nikolova, L.; LaGrange, T.; Reed, B. W.
  • Applied Physics Letters, Vol. 97, Issue 20
  • DOI: 10.1063/1.3518069

Transport of water into the lower mantle: Role of stishovite: TRANSPORT OF WATER INTO THE LOWER MANTLE
journal, January 2003

  • Panero, Wendy R.; Benedetti, Laura Robin; Jeanloz, Raymond
  • Journal of Geophysical Research: Solid Earth, Vol. 108, Issue B1
  • DOI: 10.1029/2002JB002053

Shock metamorphism of quartz with initial temperatures ?170 to + 1000� C
journal, December 1992

  • Gratz, A. J.; Nellis, W. J.; Christie, J. M.
  • Physics and Chemistry of Minerals, Vol. 19, Issue 5
  • DOI: 10.1007/BF00204005

Progress in 2 mm Glow Discharge Polymer Mandrel Development for NIF
journal, March 2004

  • Nikroo, A.; Bousquet, J.; Cook, R.
  • Fusion Science and Technology, Vol. 45, Issue 2
  • DOI: 10.13182/FST45-2-165

    Works referencing / citing this record:

    Direct imaging of ultrafast lattice dynamics
    journal, March 2019

    • Brown, S. Brennan; Gleason, A. E.; Galtier, E.
    • Science Advances, Vol. 5, Issue 3
    • DOI: 10.1126/sciadv.aau8044