skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

Abstract

This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

Authors:
 [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
OSTI Identifier:
1225852
Report Number(s):
SAND2015-9358
607877
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English

Citation Formats

Ennis, Brandon Lee, and Paquette, Joshua A. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review. United States: N. p., 2015. Web. doi:10.2172/1225852.
Ennis, Brandon Lee, & Paquette, Joshua A. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review. United States. doi:10.2172/1225852.
Ennis, Brandon Lee, and Paquette, Joshua A. Thu . "NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review". United States. doi:10.2172/1225852. https://www.osti.gov/servlets/purl/1225852.
@article{osti_1225852,
title = {NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review},
author = {Ennis, Brandon Lee and Paquette, Joshua A.},
abstractNote = {This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.},
doi = {10.2172/1225852},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Oct 01 00:00:00 EDT 2015},
month = {Thu Oct 01 00:00:00 EDT 2015}
}

Technical Report:

Save / Share:
  • Abstract not provided.
  • The primary thrust of the CRADA will be to develop a new rotor design that will allow higher current flows (>4m/s), greater swept area (6-11m), and in the process, will maximize performance and energy capture.
  • The Zimitar one-piece rotor primary structure is integrated, so balanced thrust and gravity loads flow through the hub region without transferring out of its composite material. Large inner rotor geometry is used since there is no need to neck down to a blade root region and pitch bearing. Rotor control is provided by a highly redundant, five flap system on each blade, sized so that easily handled standard electric linear actuators are sufficient.
  • Aeroelastic effects impact the structural dynamic behavior of vertical axis wind turbines (VAWRs) in two major ways. First, the stability phenomena of flutter and divergence are direct results of the aeroelasticity of the structure. Secondly, aerodynamic damping can be important for predicting response levels, particularly near resonance, but also for off-resonance conditions. The inclusion of the aeroelasticity is carried out by modifying the damping and stiffness matrices in the NASTRAN finite element code. Through the use of a specially designed preprocessor, which reads the usual NASTRAN input deck and adds appropriate cards to it, the incorporation of the aeroelastic effectsmore » has been made relatively transparent to the user. NASTRAN flutter predictions are validated using field measurements and the effect of aerodynamic damping is demonstrated through an application to the Test Bed VAWT being designed at Sandia.« less
  • Several models have been formed for investigating the maximum electromagnetic loading and magnetic field levels associated with the Tokamak Physics eXperiment (TPX) superconducting Poloidal Field (PF) coils. The analyses have been performed to support the design of the individual fourteen hoop coils forming the PF system. The coils have been sub-divided into three coil systems consisting of the central solenoid (CS), PF5 coils, and the larger radius PF6 and PF7 coils. Various electromagnetic analyses have been performed to determine the electromagnetic loadings that the coils will experience during normal operating conditions, plasma disruptions, and fault conditions. The loadings are presentedmore » as net body forces acting individual coils, spatial variations throughout the coil cross section, and force variations along the path of the conductor due to interactions with the TF coils. Three refined electromagnetic models of the PF coil system that include a turn-by-turn description of the fields and forces during a worst case event are presented in this report. A global model including both the TF and PF system was formed to obtain the force variations along the path of the PF conductors resulting from interactions with the TF currents. In addition to spatial variations, the loadings are further subdivided into time-varying and steady components so that structural fatigue issues can be addressed by designers and analysts. Other electromagnetic design issues such as the impact of the detailed coil designs on field errors are addressed in this report. Coil features that are analyzed include radial transitions via short jogs vs. spiral type windings and the effects of layer-to-layer rotations (i.e clocking) on the field errors.« less