skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: RC-1 AND IPF SUPPLEMENTAL HAZARD CATEGORIZATION

Authors:
 [1];  [1]
  1. Los Alamos National Laboratory
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1225577
Report Number(s):
LA-UR-07-1242
DOE Contract Number:
AC52-06NA25396
Resource Type:
Conference
Resource Relation:
Conference: 2007 SAWG ANNUAL WORKSHOP ; 200705 ; IDAHO FALLS
Country of Publication:
United States
Language:
English
Subject:
38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY

Citation Formats

STRICKLAND, STACEY J., and NORMAN, RICHARD A. RC-1 AND IPF SUPPLEMENTAL HAZARD CATEGORIZATION. United States: N. p., 2007. Web.
STRICKLAND, STACEY J., & NORMAN, RICHARD A. RC-1 AND IPF SUPPLEMENTAL HAZARD CATEGORIZATION. United States.
STRICKLAND, STACEY J., and NORMAN, RICHARD A. Fri . "RC-1 AND IPF SUPPLEMENTAL HAZARD CATEGORIZATION". United States. doi:. https://www.osti.gov/servlets/purl/1225577.
@article{osti_1225577,
title = {RC-1 AND IPF SUPPLEMENTAL HAZARD CATEGORIZATION},
author = {STRICKLAND, STACEY J. and NORMAN, RICHARD A.},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Feb 23 00:00:00 EST 2007},
month = {Fri Feb 23 00:00:00 EST 2007}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The Fermilab 15-foot bubble chamber has been exposed to a quadrupole triplet neutrino beam. During this exposure, a 2-plane EMI and a 1/3-scale IPF, were in operation down-stream of the bubble chamber. The IPF consisted of sixteen 0.1 m/sup 2/ drift chambers (pickets) placed inside the vacuum tank of the bubble chamber to record temporal information from neutrino interactions. When a greater than or equal to 5-fold time coincidence between one or more of the pickets of the IPF and the EMI was formed, one was able to search the nagmetic tapes for dimuon candidates. Even with 1/3 geometrical coveragemore » by the IPF, this system identified 70% of the dimuon candidates before the film was scanned. Other performance characteristics of the system will be presented with emphasis on the usefulness of the IPF.« less
  • Hazardous Waste Management (HWM) facilities are used in the handling and processing of solid and liquid radioactive, hazardous, mixed, and medical wastes generated at Lawrence Livermore National Laboratory (LLNL). Waste may be treated or stored in one of the HWM facility units prior to shipment off site for treatment or disposal. Planned facilities such as the Decontamination and Waste Treatment Facility (DWTF) and the Building 280 Container Storage Unit are expected to handle similar waste streams. A hazard classification was preformed in each facility safety analysis report (SAR) according to the DOE Standard 1027-92 `Hazard Categorization and Accident Analysis Techniquesmore » for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports.` The general methodology practiced by HWM to determine alternate airborne release fractions (ARFs) in those SARs was based upon a beyond evaluation basis earthquake accident scenario characterized by the release of the largest amount of respirable, airborne radioactive material. The alternate ARF was calculated using a three-factor formula consisting of the fraction of failed waste containers, fraction of material released from failed waste containers,and the fraction of material entrained to the environment. Recently, in deliberation with DOE-Oakland representatives, HWM decided to modify this methodology. In place of the current detailed analysis, a more straightforward process was proposed based upon material form, credible accident environments, and empirical data. This paper will discuss the methodology and derivation of ARFs specific to HWM treatment and storage facilities that are alternative to those presented in DOE-STD-1027-92.« less
  • Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases frommore » radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.« less
  • U.S. Department of Energy (DOE) nuclear facilities are categorized by the level of hazard they pose to workers, the general public, and the environment. This paper applies the methodology outlined in DOE-STD-1027-92 and interpreted in recent DOE guidance to a nuclear material storage facility at the Savannah River Site to reduce the category of the facility to below HC-3.
  • This paper addresses issues associated with the effects of daughter product in-growth on the hazard categorization of facilities in accordance with DOE-STD-1027-92, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports.” There is a list of issues that occur when performing facility hazard categorizations at DOE facilities. The first issue is when radionuclides are concentrated outside of their natural decay schemes, and the resulting daughter products exceed the hazard category three threshold quantity values (HC3 TQVs) while their parents do not. The second issue is if a parent nuclide is evaluated for themore » inhalation pathway, and the daughter product is evaluated using a different pathway and methodology. The third issue is when the parent and daughter are evaluated using the same pathway for exposure, but the daughter is significantly more radiotoxic than the parent. Lastly, when the TQVs were derived for hazard categorization, the methodology used involved a 24 hour exposure period during which, for the sake of simplicity, no consideration was given to decay and the subsequent in-growth of daughter products. Facility hazard categorization is a snapshot in time and does not provide an accurate inventory for long term operations and/or storage.« less