skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

Abstract

Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

Inventors:
; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1224822
Patent Number(s):
9,176,065
Application Number:
14/316,024
Assignee:
Lawrence Livermore National Security, LLC LLNL
DOE Contract Number:  
AC52-07NA27344
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Jun 26
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Bond, Tiziana C, Miles, Robin, Davidson, James, and Liu, Gang Logan. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto. United States: N. p., 2015. Web.
Bond, Tiziana C, Miles, Robin, Davidson, James, & Liu, Gang Logan. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto. United States.
Bond, Tiziana C, Miles, Robin, Davidson, James, and Liu, Gang Logan. Tue . "Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto". United States. doi:. https://www.osti.gov/servlets/purl/1224822.
@article{osti_1224822,
title = {Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto},
author = {Bond, Tiziana C and Miles, Robin and Davidson, James and Liu, Gang Logan},
abstractNote = {Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 03 00:00:00 EST 2015},
month = {Tue Nov 03 00:00:00 EST 2015}
}

Patent:

Save / Share:

Works referenced in this record:

Advances in surface plasmon resonance biosensor analysis
journal, February 2000


Surface plasmon subwavelength optics
journal, August 2003

  • Barnes, William L.; Dereux, Alain; Ebbesen, Thomas W.
  • Nature, Vol. 424, Issue 6950, p. 824-830
  • DOI: 10.1038/nature01937

Surface plasmons enhance optical transmission through subwavelength holes
journal, September 1998

  • Ghaemi, H. F.; Thio, Tineke; Grupp, D. E.
  • Physical Review B, Vol. 58, Issue 11, p. 6779-6782
  • DOI: 10.1103/PhysRevB.58.6779

Beaming Light from a Subwavelength Aperture
journal, June 2002


Metal cluster enhanced organic solar cells
journal, February 2000

  • Westphalen, M.; Kreibig, U.; Rostalski, J.
  • Solar Energy Materials and Solar Cells, Vol. 61, Issue 1, p. 97-105
  • DOI: 10.1016/S0927-0248(99)00100-2

Optical Constants of the Noble Metals
journal, December 1972


Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon
journal, January 1990

  • Lehmann, V.; Föll, H.
  • Journal of The Electrochemical Society, Vol. 137, Issue 2, p. 653-659
  • DOI: 10.1149/1.2086525

Photonic-bandgap microcavities in optical waveguides
journal, November 1997

  • Foresi, J. S.; Villeneuve, P. R.; Ferrera, J.
  • Nature, Vol. 390, Issue 6656, p. 143-145
  • DOI: 10.1038/36514

Patterning with block copolymer thin films
journal, February 2005


The Physics of Macropore Formation in Low Doped n-Type Silicon
journal, January 1993

  • Lehmann, V.
  • Journal of The Electrochemical Society, Vol. 140, Issue 10, p. 2836-2843
  • DOI: 10.1149/1.2220919