skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Non-adiabatic molecular dynamics by accelerated semiclassical Monte Carlo

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.4923473· OSTI ID:1224061

Non-adiabatic dynamics, where systems non-radiatively transition between electronic states, plays a crucial role in many photo-physical processes, such as fluorescence, phosphorescence, and photoisomerization. Methods for the simulation of non-adiabatic dynamics are typically either numerically impractical, highly complex, or based on approximations which can result in failure for even simple systems. Recently, the Semiclassical Monte Carlo (SCMC) approach was developed in an attempt to combine the accuracy of rigorous semiclassical methods with the efficiency and simplicity of widely used surface hopping methods. However, while SCMC was found to be more efficient than other semiclassical methods, it is not yet as efficient as is needed to be used for large molecular systems. Here, we have developed two new methods: the accelerated-SCMC and the accelerated-SCMC with re-Gaussianization, which reduce the cost of the SCMC algorithm up to two orders of magnitude for certain systems. In most cases shown here, the new procedures are nearly as efficient as the commonly used surface hopping schemes, with little to no loss of accuracy. This implies that these modified SCMC algorithms will be of practical numerical solutions for simulating non-adiabatic dynamics in realistic molecular systems.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
Grant/Contract Number:
AC52-06NA25396
OSTI ID:
1224061
Alternate ID(s):
OSTI ID: 1420583
Report Number(s):
LA-UR-15-22765; JCPSA6; TRN: US1600411
Journal Information:
Journal of Chemical Physics, Vol. 143, Issue 1; ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)Copyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science