skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Image fusion using sparse overcomplete feature dictionaries

Abstract

Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.

Inventors:
; ; ; ;
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1222629
Patent Number(s):
9,152,881
Application Number:
14/026,295
Assignee:
Los Alamos National Security, LLC (Los Alamos, NM) LANL
DOE Contract Number:  
AC52-06NA25396
Resource Type:
Patent
Resource Relation:
Patent File Date: 2013 Sep 13
Country of Publication:
United States
Language:
English
Subject:
97 MATHEMATICS AND COMPUTING

Citation Formats

Brumby, Steven P., Bettencourt, Luis, Kenyon, Garrett T., Chartrand, Rick, and Wohlberg, Brendt. Image fusion using sparse overcomplete feature dictionaries. United States: N. p., 2015. Web.
Brumby, Steven P., Bettencourt, Luis, Kenyon, Garrett T., Chartrand, Rick, & Wohlberg, Brendt. Image fusion using sparse overcomplete feature dictionaries. United States.
Brumby, Steven P., Bettencourt, Luis, Kenyon, Garrett T., Chartrand, Rick, and Wohlberg, Brendt. Tue . "Image fusion using sparse overcomplete feature dictionaries". United States. doi:. https://www.osti.gov/servlets/purl/1222629.
@article{osti_1222629,
title = {Image fusion using sparse overcomplete feature dictionaries},
author = {Brumby, Steven P. and Bettencourt, Luis and Kenyon, Garrett T. and Chartrand, Rick and Wohlberg, Brendt},
abstractNote = {Approaches for deciding what individuals in a population of visual system "neurons" are looking for using sparse overcomplete feature dictionaries are provided. A sparse overcomplete feature dictionary may be learned for an image dataset and a local sparse representation of the image dataset may be built using the learned feature dictionary. A local maximum pooling operation may be applied on the local sparse representation to produce a translation-tolerant representation of the image dataset. An object may then be classified and/or clustered within the translation-tolerant representation of the image dataset using a supervised classification algorithm and/or an unsupervised clustering algorithm.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Oct 06 00:00:00 EDT 2015},
month = {Tue Oct 06 00:00:00 EDT 2015}
}

Patent:

Save / Share:

Works referenced in this record:

Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization
journal, February 2003

  • Donoho, D. L.; Elad, M.
  • Proceedings of the National Academy of Sciences, Vol. 100, Issue 5, p. 2197-2202
  • DOI: 10.1073/pnas.0437847100

Spatial frequency selectivity of cells in macaque visual cortex
journal, January 1982

  • De Valois, Russell L.; Albrecht, Duane G.; Thorell, Lisa G.
  • Vision Research, Vol. 22, Issue 5, p. 545-559
  • DOI: 10.1016/0042-6989(82)90113-4

The orientation and direction selectivity of cells in macaque visual cortex
journal, January 1982


A feedforward architecture accounts for rapid categorization
journal, April 2007

  • Serre, T.; Oliva, A.; Poggio, T.
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 15, p. 6424-6429
  • DOI: 10.1073/pnas.0700622104