skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetics and Mechanisms of Calcite Reactions with Saline Waters

Abstract

Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO 2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO 2, Ca 2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO 2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediatedmore » by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer growth mechanism was confirmed by grazing incidence X-ray diffraction, µ-Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and electron diffraction. Extended time studies out to 45 days confirmed the epitaxial relationship of the overgrowth layer with the substrate. Under NSW conditions, overgrowths were found to have ~0.4 to 0.8 nm / hr growth rates and accommodating 4 at% Mg, resulting in a highly strained overgrowth layer. Following the initial layer by layer growth mechanism, the growth changes to Stranski-Krastanov type after a critical thickness of approximately 100 nm.« less

Authors:
 [1]
  1. Colorado School of Mines, Golden, CO (United States)
Publication Date:
Research Org.:
Colorado School of Mines, Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Org.:
Colorado Center for Advanced Ceramics; Department of Metallurgical and Materials Engineering
OSTI Identifier:
1213531
DOE Contract Number:  
SC0004303
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES

Citation Formats

Gorman, Brian P. Kinetics and Mechanisms of Calcite Reactions with Saline Waters. United States: N. p., 2015. Web. doi:10.2172/1213531.
Gorman, Brian P. Kinetics and Mechanisms of Calcite Reactions with Saline Waters. United States. doi:10.2172/1213531.
Gorman, Brian P. Wed . "Kinetics and Mechanisms of Calcite Reactions with Saline Waters". United States. doi:10.2172/1213531. https://www.osti.gov/servlets/purl/1213531.
@article{osti_1213531,
title = {Kinetics and Mechanisms of Calcite Reactions with Saline Waters},
author = {Gorman, Brian P},
abstractNote = {Project Description: The general objective of the proposed research is to determine the kinetics and mechanisms of calcite reactions with saline waters over a wide range of saline water composition, pCO2, and modest ranges in T and P. This will be accomplished by studying both reaction rates and solubility from changes in solution chemistry, and making nanoscale observations of calcite precipitate surface morphology and composition at the micro-to-nano-scale to provide an understanding of controlling reaction mechanisms and pathways. The specific objectives necessary to reach the general objective are: a) determination of how pCO2, Ca2+, ionic strength and “foreign” ions influence reaction rates; and b) investigate the influence of these parameters on apparent kinetic solubility from dissolution and precipitation reactions. This information will clearly be central to the construction of reliable reaction-transport models to predict reservoir and formation response to increased CO2 in saline waters. This program was initially collaborative with John Morse at Texas A&M, however his passing shortly after the beginning of this program resulted in abbreviated research time and effort. Summary of Results: Early studies using electron microscopy and spectroscopy indicated that carbonate precipitation from natural seawater (NSW) conditions onto aragonite substrates was mediated by a surface amorphous calcium carbonate layer. It was hypothesized that this ACC layer (observed after < 5days reaction time) was responsible for the abnormal reaction kinetics and also served as a metastable seed layer for growth of epitaxial aragonite. Further studies of the ACC formation mechanism indicated a strong dependence on the Mg concentration in solution. Subsequent studies at shorter times (10 hrs) on calcite substrates and in a wide range of supersaturation conditions did not indicate any ACC layer. Instead, an epitaxial layer by layer growth mechanism was confirmed by grazing incidence X-ray diffraction, µ-Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, and electron diffraction. Extended time studies out to 45 days confirmed the epitaxial relationship of the overgrowth layer with the substrate. Under NSW conditions, overgrowths were found to have ~0.4 to 0.8 nm / hr growth rates and accommodating 4 at% Mg, resulting in a highly strained overgrowth layer. Following the initial layer by layer growth mechanism, the growth changes to Stranski-Krastanov type after a critical thickness of approximately 100 nm.},
doi = {10.2172/1213531},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {9}
}