skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Automated transient identification in the Dark Energy Survey

Abstract

We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0 percent of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.

Authors:
 [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). et al.
Publication Date:
Research Org.:
Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
DES
OSTI Identifier:
1212752
Report Number(s):
FERMILAB-PUB-15-141-AE
Journal ID: ISSN 1538-3881; arXiv eprint number arXiv:1504.02936
DOE Contract Number:  
AC02-07CH11359
Resource Type:
Journal Article
Journal Name:
Astronomical Journal (Online)
Additional Journal Information:
Journal Volume: 150; Journal Issue: 3; Journal ID: ISSN 1538-3881
Country of Publication:
United States
Language:
English
Subject:
transients; discovery; algorithms; statistical; random forest; machine learning

Citation Formats

Goldstein, D. A. Automated transient identification in the Dark Energy Survey. United States: N. p., 2015. Web. doi:10.1088/0004-6256/150/3/82.
Goldstein, D. A. Automated transient identification in the Dark Energy Survey. United States. doi:10.1088/0004-6256/150/3/82.
Goldstein, D. A. Thu . "Automated transient identification in the Dark Energy Survey". United States. doi:10.1088/0004-6256/150/3/82. https://www.osti.gov/servlets/purl/1212752.
@article{osti_1212752,
title = {Automated transient identification in the Dark Energy Survey},
author = {Goldstein, D. A.},
abstractNote = {We describe an algorithm for identifying point-source transients and moving objects on reference-subtracted optical images containing artifacts of processing and instrumentation. The algorithm makes use of the supervised machine learning technique known as Random Forest. We present results from its use in the Dark Energy Survey Supernova program (DES-SN), where it was trained using a sample of 898,963 signal and background events generated by the transient detection pipeline. After reprocessing the data collected during the first DES-SN observing season (2013 September through 2014 February) using the algorithm, the number of transient candidates eligible for human scanning decreased by a factor of 13.4, while only 1.0 percent of the artificial Type Ia supernovae (SNe) injected into search images to monitor survey efficiency were lost, most of which were very faint events. Here we characterize the algorithm's performance in detail, and we discuss how it can inform pipeline design decisions for future time-domain imaging surveys, such as the Large Synoptic Survey Telescope and the Zwicky Transient Facility.},
doi = {10.1088/0004-6256/150/3/82},
journal = {Astronomical Journal (Online)},
issn = {1538-3881},
number = 3,
volume = 150,
place = {United States},
year = {2015},
month = {8}
}

Works referenced in this record:

A Method for Optimal Image Subtraction
journal, August 1998

  • Alard, C.; Lupton, Robert H.
  • The Astrophysical Journal, Vol. 503, Issue 1
  • DOI: 10.1086/305984

Overview of the Nearby Supernova Factory
conference, December 2002

  • Aldering, Greg; Adam, G.; Antilogus, P.
  • Astronomical Telescopes and Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.458107

Sunfall: a collaborative visual analytics system for astrophysics
journal, July 2008


The Supernova Legacy Survey: measurement of $\Omega_{\mathsf{M}}$, $\Omega_\mathsf{\Lambda}$ and w from the first year data set
journal, January 2006


How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging
journal, August 2007

  • Bailey, S.; Aragon, C.; Romano, R.
  • The Astrophysical Journal, Vol. 665, Issue 2
  • DOI: 10.1086/519832

The QUEST Large Area CCD Camera
journal, November 2007

  • Baltay, C.; Rabinowitz, D.; Andrews, P.
  • Publications of the Astronomical Society of the Pacific, Vol. 119, Issue 861
  • DOI: 10.1086/523899

Galaxy Zoo: reproducing galaxy morphologies via machine learning★: Galaxy Zoo: morphology via machine learning
journal, April 2010


Supernova Simulations and Strategies for the dark Energy Survey
journal, June 2012


SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

Type Ia supernova rate at a redshift of ~0.1
journal, August 2004


Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era
journal, November 2012

  • Bloom, J. S.; Richards, J. W.; Nugent, P. E.
  • Publications of the Astronomical Society of the Pacific, Vol. 124, Issue 921
  • DOI: 10.1086/668468

Random Forests
journal, January 2001


Using machine learning for discovery in synoptic survey imaging data
journal, August 2013

  • Brink, Henrik; Richards, Joseph W.; Poznanski, Dovi
  • Monthly Notices of the Royal Astronomical Society, Vol. 435, Issue 2
  • DOI: 10.1093/mnras/stt1306

The Blanco Cosmology Survey: data Acquisition, Processing, Calibration, Quality Diagnostics, and data Release
journal, September 2012


The Dark Energy Survey Camera (DECam)
journal, January 2012


The Dark Energy Survey and operations: Year 1
conference, August 2014

  • Diehl, H. T.; Abbott, T. M. C.; Annis, J.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2056982

The Dark Energy Survey
journal, June 2005


Status of the Dark Energy Survey Camera (DECam) project
conference, September 2012

  • Flaugher, Brenna L.; Abbott, Timothy M. C.; Angstadt, Robert
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.926216

The Sloan Digital sky Survey-Ii Supernova Survey: Technical Summary
journal, December 2007


Measurement of Inequality of Incomes
journal, March 1921

  • Gini, Corrado
  • The Economic Journal, Vol. 31, Issue 121
  • DOI: 10.2307/2223319

The 1990 Calan/Tololo Supernova Search
journal, December 1993

  • Hamuy, Mario; Maza, Jose; Phillips, M. M.
  • The Astronomical Journal, Vol. 106
  • DOI: 10.1086/116811

A simple and robust method for automated photometric classification of supernovae using neural networks
journal, December 2012

  • Karpenka, N. V.; Feroz, F.; Hobson, M. P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 429, Issue 2
  • DOI: 10.1093/mnras/sts412

SNANA: A Public Software Package for Supernova Analysis
journal, September 2009

  • Kessler, Richard; Bernstein, Joseph P.; Cinabro, David
  • Publications of the Astronomical Society of the Pacific, Vol. 121, Issue 883
  • DOI: 10.1086/605984

PRELIMINARY RESULTS FROM NEOWISE: AN ENHANCEMENT TO THE WIDE-FIELD INFRARED SURVEY EXPLORER FOR SOLAR SYSTEM SCIENCE
journal, March 2011


COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY
journal, October 2014


Active Learning to Overcome Sample Selection Bias: Application to Photometric Variable star Classification
journal, December 2011


On Machine-Learned Classification of Variable Stars with Sparse and Noisy Time-Series data
journal, April 2011

  • Richards, Joseph W.; Starr, Dan L.; Butler, Nathaniel R.
  • The Astrophysical Journal, Vol. 733, Issue 1
  • DOI: 10.1088/0004-637X/733/1/10

Alternatives to the Median Absolute Deviation
journal, December 1993


The Sloan Digital sky Survey-Ii Supernova Survey: Search Algorithm and Follow-Up Observations
journal, December 2007


PHOTOMETRIC TYPE Ia SUPERNOVA CANDIDATES FROM THE THREE-YEAR SDSS-II SN SURVEY DATA
journal, August 2011


The High‐Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae
journal, November 1998

  • Schmidt, Brian P.; Suntzeff, Nicholas B.; Phillips, M. M.
  • The Astrophysical Journal, Vol. 507, Issue 1
  • DOI: 10.1086/306308

A Mathematical Theory of Communication
journal, July 1948


The Zwicky transient facility observing system
conference, July 2014

  • Smith, Roger M.; Dekany, Richard G.; Bebek, Christopher
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2070014

Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars: Core-collapse supernova fractions
journal, March 2011


The Hubble Higher z Supernova Search: Supernovae to z ≈ 1.6 and Constraints on Type Ia Progenitor Models
journal, September 2004

  • Strolger, Louis‐Gregory; Riess, Adam G.; Dahlen, Tomas
  • The Astrophysical Journal, Vol. 613, Issue 1
  • DOI: 10.1086/422901

Cosmic‐Ray Rejection by Laplacian Edge Detection
journal, November 2001

  • van Dokkum, Pieter G.
  • Publications of the Astronomical Society of the Pacific, Vol. 113, Issue 789
  • DOI: 10.1086/323894

Main-belt comets in the Palomar Transient Factory survey – I. The search for extendedness
journal, June 2013

  • Waszczak, A.; Ofek, E. O.; Aharonson, O.
  • Monthly Notices of the Royal Astronomical Society, Vol. 433, Issue 4
  • DOI: 10.1093/mnras/stt951

Machine learning for transient discovery in Pan-STARRS1 difference imaging
journal, March 2015

  • Wright, D. E.; Smartt, S. J.; Smith, K. W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 449, Issue 1
  • DOI: 10.1093/mnras/stv292

    Works referencing / citing this record:

    The Dark Energy Survey Image Processing Pipeline
    journal, May 2018

    • Morganson, E.; Gruendl, R. A.; Menanteau, F.
    • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 989
    • DOI: 10.1088/1538-3873/aab4ef