skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An adaptive procedure for the numerical parameters of a particle simulation

Publication Date:
Sponsoring Org.:
USDOE Office of Science (SC), Fusion Energy Sciences (FES)
OSTI Identifier:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Computational Physics; Journal Volume: 281; Journal Issue: C
Country of Publication:
United States

Citation Formats

Galitzine, C, and Boyd, ID. An adaptive procedure for the numerical parameters of a particle simulation. United States: N. p., 2015. Web. doi:10.1016/
Galitzine, C, & Boyd, ID. An adaptive procedure for the numerical parameters of a particle simulation. United States. doi:10.1016/
Galitzine, C, and Boyd, ID. 2015. "An adaptive procedure for the numerical parameters of a particle simulation". United States. doi:10.1016/
title = {An adaptive procedure for the numerical parameters of a particle simulation},
author = {Galitzine, C and Boyd, ID},
abstractNote = {},
doi = {10.1016/},
journal = {Journal of Computational Physics},
number = C,
volume = 281,
place = {United States},
year = 2015,
month = 1
  • Cited by 1
  • We carry out adaptive mesh refinement cosmological simulations of Milky Way mass halos in order to investigate the formation of disk-like galaxies in a {Lambda}-dominated cold dark matter model. We evolve a suite of five halos to z = 0 and find a gas disk formation in each; however, in agreement with previous smoothed particle hydrodynamics simulations (that did not include a subgrid feedback model), the rotation curves of all halos are centrally peaked due to a massive spheroidal component. Our standard model includes radiative cooling and star formation, but no feedback. We further investigate this angular momentum problem bymore » systematically modifying various simulation parameters including: (1) spatial resolution, ranging from 1700 to 212 pc; (2) an additional pressure component to ensure that the Jeans length is always resolved; (3) low star formation efficiency, going down to 0.1%; (4) fixed physical resolution as opposed to comoving resolution; (5) a supernova feedback model that injects thermal energy to the local cell; and (6) a subgrid feedback model which suppresses cooling in the immediate vicinity of a star formation event. Of all of these, we find that only the last (cooling suppression) has any impact on the massive spheroidal component. In particular, a simulation with cooling suppression and feedback results in a rotation curve that, while still peaked, is considerably reduced from our standard runs.« less
  • Numerical simulation can be key to the understanding of the multi-dimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the non-equilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniquesmore » in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, i.e. under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis and a diagram of the transition boundaries between possible Mach reflection structures is constructed.« less
  • MADNESS (multiresolution adaptive numerical environment for scientific simulation) is a high-level software environment for solving integral and differential equations in many dimensions that uses adaptive and fast harmonic analysis methods with guaranteed precision based on multiresolution analysis and separated representations. Underpinning the numerical capabilities is a powerful petascale parallel programming environment that aims to increase both programmer productivity and code scalability. This paper describes the features and capabilities of MADNESS and briefly discusses some current applications in chemistry and several areas of physics.
  • Use of adaptive simulation is intended to improve the fidelity and robustness of important core attribute predictions such as core power distribution, thermal margins, and core reactivity. Adaptive simulation utilizes a selected set of past and current reactor measurements of reactor observables, i.e., in-core instrumentation readings, to adapt the simulation in a meaningful way. The companion paper, ''Adaptive Core Simulation Employing Discrete Inverse Theory - Part I: Theory,'' describes in detail the theoretical background of the proposed adaptive techniques. This paper, Part II, demonstrates several computational experiments conducted to assess the fidelity and robustness of the proposed techniques. The intentmore » is to check the ability of the adapted core simulator model to predict future core observables that are not included in the adaption or core observables that are recorded at core conditions that differ from those at which adaption is completed. Also, this paper demonstrates successful utilization of an efficient sensitivity analysis approach to calculate the sensitivity information required to perform the adaption for millions of input core parameters. Finally, this paper illustrates a useful application for adaptive simulation - reducing the inconsistencies between two different core simulator code systems, where the multitudes of input data to one code are adjusted to enhance the agreement between both codes for important core attributes, i.e., core reactivity and power distribution. Also demonstrated is the robustness of such an application.« less