skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Life Cycle Assessment of Biobased p-Xylene Production

; ;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC); Catalysis Center for Energy Innovation (CCEI)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
DOE Contract Number:
Resource Type:
Journal Article
Resource Relation:
Journal Name: Ind. Eng. Chem. Res.; Journal Volume: 54; Related Information: CCEI partners with the University of Delaware (lead); Brookhaven National Laboratory; California Institute of Technology; Columbia University; University of Delaware; Lehigh University; University of Massachusetts, Amherst; Massachusetts Institute of Technology; University of Minnesota; Pacific Northwest National Laboratory; University of Pennsylvania; Princeton University; Rutgers University
Country of Publication:
United States
catalysis (homogeneous), catalysis (heterogeneous), biofuels (including algae and biomass), bio-inspired, hydrogen and fuel cells, materials and chemistry by design, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)

Citation Formats

Lin, Z., Nikolakis, V., and Ierapetritou, M.. Life Cycle Assessment of Biobased p-Xylene Production. United States: N. p., 2015. Web. doi:10.1021/ie5037287.
Lin, Z., Nikolakis, V., & Ierapetritou, M.. Life Cycle Assessment of Biobased p-Xylene Production. United States. doi:10.1021/ie5037287.
Lin, Z., Nikolakis, V., and Ierapetritou, M.. 2015. "Life Cycle Assessment of Biobased p-Xylene Production". United States. doi:10.1021/ie5037287.
title = {Life Cycle Assessment of Biobased p-Xylene Production},
author = {Lin, Z. and Nikolakis, V. and Ierapetritou, M.},
abstractNote = {},
doi = {10.1021/ie5037287},
journal = {Ind. Eng. Chem. Res.},
number = ,
volume = 54,
place = {United States},
year = 2015,
month = 3
  • As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference inmore » impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.« less
  • Spatial variability in yields and greenhouse gas emissions from soils has been identified as a key source of variability in life cycle assessments (LCAs) of agricultural products such as cellulosic ethanol. This study aims to conduct an LCA of cellulosic ethanol production from switchgrass in a way that captures this spatial variability and tests results for sensitivity to using spatially averaged results. The Environment Policy Integrated Climate (EPIC) model was used to calculate switchgrass yields, greenhouse gas (GHG) emissions, and nitrogen and phosphorus emissions from crop production in southern Wisconsin and Michigan at the watershed scale. These data were combinedmore » with cellulosic ethanol production data via ammonia fiber expansion and dilute acid pretreatment methods and region-specific electricity production data into an LCA model of eight ethanol production scenarios. Standard deviations from the spatial mean yields and soil emissions were used to test the sensitivity of net energy ratio, global warming potential intensity, and eutrophication and acidification potential metrics to spatial variability. Substantial variation in the eutrophication potential was also observed when nitrogen and phosphorus emissions from soils were varied. This work illustrates the need for spatially explicit agricultural production data in the LCA of biofuels and other agricultural products.« less
  • The process synthesis, technoeconomic analysis, and life cycle assessment (LCA) of a novel route for phthalic anhydride (PAN) production from hemicellulose solutions are presented. The production contains six steps including dehydration of xylose to furfural, reductive decarbonylation of furfural to furan, oxidation of furfural to maleic anhydride (MA), Diels-Alder cycloaddition of furan, and MA to exo-4,10-dioxa-tricyclo[]dec-8-ene-3,5-dione followed by dehydration to PAN in the presence of mixture of methanesulfonic acid and acetic anhydride (AAN) which is converted to acetyl methanesulfonate and acetic acid (AAD), and dehydration of AAD to AAN. The minimum selling price of PAN is determined to be $810/metricmore » ton about half of oil-based PAN. The coproduction of high-value products is essential to improve the economics. Biomass feedstock contributes to the majority of cost. LCA results shows that biomass-based PAN has advantages over oil-based PAN to reduce climate change and fossil depletion however requires more water usage.« less
  • A model for input- and technology-dependent cradle-to-gate life cycle assessments (LCA) was constructed to quantify emissions and resource consumption of various clinker production options. The model was compiled using data of more than 100 clinker production lines and complemented with literature data and best judgment from experts. It can be applied by the cement industry for the selection of alternative fuels and raw materials (AFR) and by authorities for decision-support regarding the permission of waste co-processing in cement kilns. In the field of sustainable construction, the model can be used to compare clinker production options. Two case studies are presented.more » First, co-processing of four different types of waste is analyzed at a modern precalciner kiln system. Second, clinker production is compared between five kiln systems. Results show that the use of waste (tires, prepared industrial waste, dried sewage sludge, blast furnace slag) led to reduced greenhouse gas emissions, decreased resource consumption, and mostly to reduced aggregated environmental impacts. Regarding the different kiln systems, the environmental impact generally increased with decreasing energy efficiency. 35 refs., 2 figs., 2 tabs.« less