skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultra Lightweight High Pressure Hydrogen Fuel Tank Reinforced with Nanotubes

 [1];  [1];  [1];  [1];  [1];  [1]
  1. Applied Nanotech, Inc., Austin, TX (United States)
Publication Date:
Research Org.:
Applied Nanotech, Inc., Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
Report Number(s):
Final Report
DOE Contract Number:
Type / Phase:
Resource Type:
Technical Report
Country of Publication:
United States

Citation Formats

Mao, Dongsheng, Li, Xueping, Cuepo, Armel, Neuburger, Sean, Shelton, Betsy, and Novak, Jamie. Ultra Lightweight High Pressure Hydrogen Fuel Tank Reinforced with Nanotubes. United States: N. p., 2015. Web.
Mao, Dongsheng, Li, Xueping, Cuepo, Armel, Neuburger, Sean, Shelton, Betsy, & Novak, Jamie. Ultra Lightweight High Pressure Hydrogen Fuel Tank Reinforced with Nanotubes. United States.
Mao, Dongsheng, Li, Xueping, Cuepo, Armel, Neuburger, Sean, Shelton, Betsy, and Novak, Jamie. 2015. "Ultra Lightweight High Pressure Hydrogen Fuel Tank Reinforced with Nanotubes". United States. doi:.
title = {Ultra Lightweight High Pressure Hydrogen Fuel Tank Reinforced with Nanotubes},
author = {Mao, Dongsheng and Li, Xueping and Cuepo, Armel and Neuburger, Sean and Shelton, Betsy and Novak, Jamie},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2015,
month = 1

Technical Report:
This technical report may be protected. To request the document, click here.
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that may hold this item. Keep in mind that many technical reports are not cataloged in WorldCat.

Save / Share:
  • The Retrieval Process Development and Enhancements Program (RPD&E) is sponsored by the U.S. Department of Energy Tanks Focus Area to investigate existing and emerging retrieval processes suitable for the retrieval of high-level radioactive waste inside underground storage tanks. This program, represented by industry, national laboratories, and academia, seeks to provide a technical and cost basis to support site-remediation decisions. Part of this program has involved the development of a high-pressure waterjet dislodging system and pneumatic conveyance integrated as a scarifier. Industry has used high-pressure waterjet technology for many years to mine, cut, clean, and scarify materials with a broad rangemore » of properties. The scarifier was developed as an alternate means of retrieving waste inside Hanford single-shell tanks, particularly hard, stubborn waste. Testing of the scarifier has verified its ability to retrieve a wide range of tank waste ranging from extremely hard waste that is resistant to other dislodging means to soft sludge and even supernatant fluid. Since the scarifier expends water at a low rate and recovers most of the water as it is used, the scarifier is well suited for retrieval of tanks that leak and cannot be safely sluiced or applications where significant waste dilution is not acceptable. Although the original scarifier was effective, it became evident that a lighter, more compact version that would be compatible with light weight deployment systems under development, such as the Light Duty Utility Arm, was needed. At the end of FY 95, the Light Weight Scarifier (LWS) was designed to incorporate the features of the original scarifier in a smaller, lighter end effector. During FY 96, the detailed design of the LWS was completed and two prototypes were fabricated.« less
  • The “Development of High Pressure Hydrogen Storage Tanks for Storage and Gaseous Truck Delivery” project [DE-FG36-08GO18062] was initiated on 01 July 2008. Hexagon Lincoln (then Lincoln Composites) received grant funding from the U.S. Department of Energy to support the design and development of an improved bulk hauling and storage solution for hydrogen in terms of cost, safety, weight and volumetric efficiency. The development of this capability required parallel development and qualification of large all-composites pressure vessels, a custom ISO container to transport and store said tanks, and performance of trade studies to identify optimal operating pressure for the system. Qualificationmore » of the 250 bar TITAN® module was completed in 2009 with supervision from the American Bureau of Shipping [ABS], and the equipment has been used internationally for bulk transportation of fuel gases since 2010. Phase 1 of the project was successfully completed in 2012 with the issuance of USDOT SP 14951, the special permit authorizing the manufacture, marking, sale and use of TITAN® Mobile Pipeline® equipment in the United States. The introduction of tube trailers with light weight composite tankage has meant that 2 to 3 times as much gaseous fuel can be transported with each trip. This increased hauling efficiency offers dramatically reduced operating costs and has enabled a profitable business model for over-the-road compressed natural gas delivery. The economic drivers of this business opportunity vary from country to country and region to region, but in many places gas distribution companies have realized profitable operations. Additional testing was performed in 2015 to characterize hydrogen-specific operating protocols for use of TITAN® systems in CHG service at 250 bar. This program demonstrated that existing compression and decompression methodologies can efficiently and safely fill and unload lightweight bulk hauling systems. Hexagon Lincoln and U.S. DOE agreed to continue into Phase 2 of the project without pursuing the development of higher pressure capabilities as originally planned. At 250 bar, development of equipment for hydrogen transport is supported by strong activity in the adjacent natural gas transportation sector. Trade studies performed since 2011 indicate optimization of hauling efficiency and system cost for hydrogen transport at about 350 bar (5076 psi). However, due to reduced efficiency of compression of natural gas above 250 bar, 350 bar operation is not an attractive option for natural gas transportation. The CHG market is not developed at this time, and it is difficult to forecast the arrival of significant revenues. On the investment side, the cost to fully qualify a large tank module at 350 bar is estimated at $3MM to $5MM. There is insufficient CHG market definition to support a stand-alone business case for this investment without near term revenue in the adjacent CNG transportation market. Therefore development of a 350 bar TITAN® system was deferred and not pursued under this project. Hexagon Lincoln continues to support the development of tankage and equipment for operation at 350 bar and above; with 700 bar vehicle tanks and 950 bar tanks for ground storage applications. Phase 2 activities were focused on reducing system cost, increasing system capacity, increasing system safety and characterization of polymer material performance specific to hydrogen pressure vessel usage. With the successful launch of TITAN® modules and trailers in natural gas transportation, over 600 units have been produced through the end of 2016, resulting in improved purchasing power for raw materials and manufactured components. This has allowed Hexagon Lincoln to approach the current project goals for system cost. At $590/kg of compressed hydrogen delivered, the system cost of the baseline TITAN® module is below the project’s 2015 target of $730/kg H2 delivered, and very close to the project’s 2020 target of $575/kg H2 delivered. [Based on product pricing in 1Q2017.] Emphasis was placed on configuration of larger capacity systems within the vehicle weights and dimensions allowed on federal and state highways in the United States and other countries. These activities resulted in the design and development of integrated tube trailer systems that have increased delivery capacities by 45%. The hydrogen delivery capacity of our largest system is 845 kg, exceeding the project’s 2015 target of 700 kg H2 delivered. Emerging technologies offering improvement of the safety systems used on the equipment were investigated, with particular focus on improving the reliability and cost of the emergency venting system for fire protection. Finally, investment in our materials laboratory improved detection and characterization of hydrogen-induced damage in polymer materials, supporting the development of operational protocols to avoid damage to pressure vessel liners and valve components.« less
  • High specific energy (>400 Wh/kg) energy storage systems have been designed using lightweight pressure vessels in conjunction with unitized regenerative fuel cells (URFCs). URFCs produce power and electrolytically regenerate their reactants using a single stack of reversible cells. Although a rechargeable energy storage system with such high specific energy has not yet been fabricated, we have made progress towards this goal. A primary fuel cell (FC) test rig with a single cell (0.05 ft{sup 2} active area) has been modified and operated reversibly as a URFC. This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching frommore » charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the oxygen side of the cell). Lightweight pressure vessels with state-of-the-art performance factors (burst pressure * internal volume/tank weight = Pb V/W) have been designed and fabricated. These vessels provide a lightweight means of storing reactant gases required for fuel cells (FCs) or URFCs. The vessels use lightweight bladder liners that act as inflatable mandrels for composite overwrap and provide the permeation barrier for gas storage. The bladders are fabricated using materials that are compatible with humidified gases which may be created by the electrolysis of water and are compatible with elevated temperatures that occur during fast fills.« less