skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fissile material holdup measurement systems: an historical review of hardware and software

Abstract

The measurement of fissile material holdup is accomplished by passively measuring the energy-dependent photon flux and/or passive neutron flux emitted from the fissile material deposited within an engineered process system. Both measurement modalities--photon and neutron--require the implementation of portable, battery-operated systems that are transported, by hand, from one measurement location to another. Because of this portability requirement, gamma-ray spectrometers are typically limited to inorganic scintillators, coupled to photomultiplier tubes, a small multi-channel analyzer, and a handheld computer for data logging. For neutron detection, polyethylene-moderated, cadmium-back-shielded He-3 thermal neutron detectors are used, coupled to nuclear electronics for supplying high voltage to the detector, and amplifying the signal chain to the scaler for counting. Holdup measurement methods, including the concept of Generalized Geometry Holdup (GGH), are well presented by T. Douglas Reilly in LA-UR-07-5149 and P. Russo in LA-14206, yet both publications leave much of the evolutionary hardware and software to the imagination of the reader. This paper presents an historical review of systems that have been developed and implemented since the mid-1980s for the nondestructive assay of fissile material, in situ. Specifications for the next-generation holdup measurements systems are conjectured.

Authors:
 [1];  [1];  [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1210160
DOE Contract Number:  
DE-AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: INMM 56th Annual Meeting, Indian Wells, CA, USA, 20150713, 20150717
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY

Citation Formats

Chapman, Jeffrey Allen, Smith, Steven E, and Rowe, Nathan C. Fissile material holdup measurement systems: an historical review of hardware and software. United States: N. p., 2015. Web.
Chapman, Jeffrey Allen, Smith, Steven E, & Rowe, Nathan C. Fissile material holdup measurement systems: an historical review of hardware and software. United States.
Chapman, Jeffrey Allen, Smith, Steven E, and Rowe, Nathan C. Thu . "Fissile material holdup measurement systems: an historical review of hardware and software". United States.
@article{osti_1210160,
title = {Fissile material holdup measurement systems: an historical review of hardware and software},
author = {Chapman, Jeffrey Allen and Smith, Steven E and Rowe, Nathan C},
abstractNote = {The measurement of fissile material holdup is accomplished by passively measuring the energy-dependent photon flux and/or passive neutron flux emitted from the fissile material deposited within an engineered process system. Both measurement modalities--photon and neutron--require the implementation of portable, battery-operated systems that are transported, by hand, from one measurement location to another. Because of this portability requirement, gamma-ray spectrometers are typically limited to inorganic scintillators, coupled to photomultiplier tubes, a small multi-channel analyzer, and a handheld computer for data logging. For neutron detection, polyethylene-moderated, cadmium-back-shielded He-3 thermal neutron detectors are used, coupled to nuclear electronics for supplying high voltage to the detector, and amplifying the signal chain to the scaler for counting. Holdup measurement methods, including the concept of Generalized Geometry Holdup (GGH), are well presented by T. Douglas Reilly in LA-UR-07-5149 and P. Russo in LA-14206, yet both publications leave much of the evolutionary hardware and software to the imagination of the reader. This paper presents an historical review of systems that have been developed and implemented since the mid-1980s for the nondestructive assay of fissile material, in situ. Specifications for the next-generation holdup measurements systems are conjectured.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2015},
month = {1}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: