skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dark matter effective field theory scattering in direct detection experiments

Abstract

We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1208763
Report Number(s):
PNNL-24214
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Physical Review. D, Particles and Fields, 91(9):Article No. 092004
Country of Publication:
United States
Language:
English

Citation Formats

Schneck, K., Cabrera, B., Cerdeno, D. G., Mandic, V., Rogers, H. E., Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Barker, D., Basu Thakur, R., Bauer, D. A., Billard, J., Borgland, A., Brandt, D., Brink, P. L., Bunker, R., Caldwell, D. O., Calkins, R., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Crewdson, C. H., Cushman, Priscilla B., Daal, M., Di Stefano, P. C., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Godfrey, G. L., Golwala, S. R., Hall, Jeter C., Harris, H. R., Hofer, T., Holmgren, D., Hsu, L., Huber, M. E., Jardin, D. M., Jastram, A., Kamaev, O., Kara, B., Kelsey, M. H., Kennedy, A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, W., Mahapatra, R., McCarthy, K. A., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Prasad, K., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Ricci, Y., Roberts, A., Saab, T., Sadoulet, B., Sander, J., Schnee, R. W., Scorza, S., Serfass, B., Shank, B., Speller, D., Toback, D., Upadhyayula, S., Villano, A. N., Welliver, B., Wilson, J. S., Wright, D. H., Yang, X., Yellin, S., Yen, J. J., Young, B. A., and Zhang, J.. Dark matter effective field theory scattering in direct detection experiments. United States: N. p., 2015. Web. doi:10.1103/PhysRevD.91.092004.
Schneck, K., Cabrera, B., Cerdeno, D. G., Mandic, V., Rogers, H. E., Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Barker, D., Basu Thakur, R., Bauer, D. A., Billard, J., Borgland, A., Brandt, D., Brink, P. L., Bunker, R., Caldwell, D. O., Calkins, R., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Crewdson, C. H., Cushman, Priscilla B., Daal, M., Di Stefano, P. C., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Godfrey, G. L., Golwala, S. R., Hall, Jeter C., Harris, H. R., Hofer, T., Holmgren, D., Hsu, L., Huber, M. E., Jardin, D. M., Jastram, A., Kamaev, O., Kara, B., Kelsey, M. H., Kennedy, A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, W., Mahapatra, R., McCarthy, K. A., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Prasad, K., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Ricci, Y., Roberts, A., Saab, T., Sadoulet, B., Sander, J., Schnee, R. W., Scorza, S., Serfass, B., Shank, B., Speller, D., Toback, D., Upadhyayula, S., Villano, A. N., Welliver, B., Wilson, J. S., Wright, D. H., Yang, X., Yellin, S., Yen, J. J., Young, B. A., & Zhang, J.. Dark matter effective field theory scattering in direct detection experiments. United States. doi:10.1103/PhysRevD.91.092004.
Schneck, K., Cabrera, B., Cerdeno, D. G., Mandic, V., Rogers, H. E., Agnese, R., Anderson, A. J., Asai, M., Balakishiyeva, D., Barker, D., Basu Thakur, R., Bauer, D. A., Billard, J., Borgland, A., Brandt, D., Brink, P. L., Bunker, R., Caldwell, D. O., Calkins, R., Chagani, H., Chen, Y., Cooley, J., Cornell, B., Crewdson, C. H., Cushman, Priscilla B., Daal, M., Di Stefano, P. C., Doughty, T., Esteban, L., Fallows, S., Figueroa-Feliciano, E., Godfrey, G. L., Golwala, S. R., Hall, Jeter C., Harris, H. R., Hofer, T., Holmgren, D., Hsu, L., Huber, M. E., Jardin, D. M., Jastram, A., Kamaev, O., Kara, B., Kelsey, M. H., Kennedy, A., Leder, A., Loer, B., Lopez Asamar, E., Lukens, W., Mahapatra, R., McCarthy, K. A., Mirabolfathi, N., Moffatt, R. A., Morales Mendoza, J. D., Oser, S. M., Page, K., Page, W. A., Partridge, R., Pepin, M., Phipps, A., Prasad, K., Pyle, M., Qiu, H., Rau, W., Redl, P., Reisetter, A., Ricci, Y., Roberts, A., Saab, T., Sadoulet, B., Sander, J., Schnee, R. W., Scorza, S., Serfass, B., Shank, B., Speller, D., Toback, D., Upadhyayula, S., Villano, A. N., Welliver, B., Wilson, J. S., Wright, D. H., Yang, X., Yellin, S., Yen, J. J., Young, B. A., and Zhang, J.. Fri . "Dark matter effective field theory scattering in direct detection experiments". United States. doi:10.1103/PhysRevD.91.092004.
@article{osti_1208763,
title = {Dark matter effective field theory scattering in direct detection experiments},
author = {Schneck, K. and Cabrera, B. and Cerdeno, D. G. and Mandic, V. and Rogers, H. E. and Agnese, R. and Anderson, A. J. and Asai, M. and Balakishiyeva, D. and Barker, D. and Basu Thakur, R. and Bauer, D. A. and Billard, J. and Borgland, A. and Brandt, D. and Brink, P. L. and Bunker, R. and Caldwell, D. O. and Calkins, R. and Chagani, H. and Chen, Y. and Cooley, J. and Cornell, B. and Crewdson, C. H. and Cushman, Priscilla B. and Daal, M. and Di Stefano, P. C. and Doughty, T. and Esteban, L. and Fallows, S. and Figueroa-Feliciano, E. and Godfrey, G. L. and Golwala, S. R. and Hall, Jeter C. and Harris, H. R. and Hofer, T. and Holmgren, D. and Hsu, L. and Huber, M. E. and Jardin, D. M. and Jastram, A. and Kamaev, O. and Kara, B. and Kelsey, M. H. and Kennedy, A. and Leder, A. and Loer, B. and Lopez Asamar, E. and Lukens, W. and Mahapatra, R. and McCarthy, K. A. and Mirabolfathi, N. and Moffatt, R. A. and Morales Mendoza, J. D. and Oser, S. M. and Page, K. and Page, W. A. and Partridge, R. and Pepin, M. and Phipps, A. and Prasad, K. and Pyle, M. and Qiu, H. and Rau, W. and Redl, P. and Reisetter, A. and Ricci, Y. and Roberts, A. and Saab, T. and Sadoulet, B. and Sander, J. and Schnee, R. W. and Scorza, S. and Serfass, B. and Shank, B. and Speller, D. and Toback, D. and Upadhyayula, S. and Villano, A. N. and Welliver, B. and Wilson, J. S. and Wright, D. H. and Yang, X. and Yellin, S. and Yen, J. J. and Young, B. A. and Zhang, J.},
abstractNote = {We examine the consequences of the effective eld theory (EFT) of dark matter-nucleon scattering or current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral di*erences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.},
doi = {10.1103/PhysRevD.91.092004},
journal = {Physical Review. D, Particles and Fields, 91(9):Article No. 092004},
number = ,
volume = ,
place = {United States},
year = {Fri May 01 00:00:00 EDT 2015},
month = {Fri May 01 00:00:00 EDT 2015}
}
  • We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
  • We examine the consequences of the effective field theory (EFT) of dark matter-nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. Here. we demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. In conclusion, we discussmore » the implications of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
  • We examine the consequences of the effective field theory (EFT) of dark matter–nucleon scattering for current and proposed direct detection experiments. Exclusion limits on EFT coupling constants computed using the optimum interval method are presented for SuperCDMS Soudan, CDMS II, and LUX, and the necessity of combining results from multiple experiments in order to determine dark matter parameters is discussed. We demonstrate that spectral differences between the standard dark matter model and a general EFT interaction can produce a bias when calculating exclusion limits and when developing signal models for likelihood and machine learning techniques. We also discuss the implicationsmore » of the EFT for the next-generation (G2) direct detection experiments and point out regions of complementarity in the EFT parameter space.« less
  • Cited by 13
  • We extend and explore the general non-relativistic effective theory of dark matter (DM) direct detection. We describe the basic non-relativistic building blocks of operators and discuss their symmetry properties, writing down all Galilean-invariant operators up to quadratic order in momentum transfer arising from exchange of particles of spin 1 or less. Any DM particle theory can be translated into the coefficients of an effective operator and any effective operator can be simply related to most general description of the nuclear response. We find several operators which lead to novel nuclear responses. These responses differ significantly from the standard minimal WIMPmore » cases in their relative coupling strengths to various elements, changing how the results from different experiments should be compared against each other. Response functions are evaluated for common DM targets — F, Na, Ge, I, and Xe — using standard shell model techniques. We point out that each of the nuclear responses is familiar from past studies of semi-leptonic electroweak interactions, and thus potentially testable in weak interaction studies. We provide tables of the full set of required matrix elements at finite momentum transfer for a range of common elements, making a careful and fully model-independent analysis possible. Finally, we discuss embedding non-relativistic effective theory operators into UV models of dark matter.« less