skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The LMC geometry and outer stellar populations from early DES data

Abstract

The Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey. The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 magnitudes fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = –38.14°±0.08° (near side in the North) and a position angle for the line of nodes of θ₀ = 129.51°±0.17°. We find that stars younger than ~4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R >4Gyr = 1.41 ± 0.01 kpc, while the younger population has R <4Gyr = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of R t = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC ismore » ≃24 +9 –6 times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fit LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. As a result, our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component.« less

Authors:
 [1];  [2];  [3];  [4];  [3];  [5];  [5];  [6];  [7];  [8];  [8];  [9];  [7];  [10];  [8];  [11];  [12];  [13];  [9];  [8] more »;  [5];  [14];  [15];  [16];  [8];  [9];  [8];  [17];  [18];  [8];  [8];  [19];  [20];  [21];  [7];  [22];  [8];  [9];  [23];  [15];  [24];  [25];  [5];  [8];  [8];  [11];  [26];  [7];  [8];  [21];  [6];  [24];  [8];  [27];  [28] « less
  1. Univ. of Surrey, Guildford (United Kingdom); Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil); Lab. Interinstitucional de e-Astronomia, Rio de Janeiro (Brazil)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Univ. Federal do Rio Grande do Sul, Porto Alegre (Brazil); Lab. Interinstitucional de e-Astronomia, Rio de Janeiro (Brazil)
  4. Osservatorio Astronomico di Padova INAF, Padova (Italy)
  5. Lab. Interinstitucional de e-Astronomia, Rio de Janeiro (Brazil); Observatorio Nacional, Rio de Janeiro (Brazil)
  6. Univ. of Illinois, Urbana, IL (United States)
  7. National Optical Astronomy Observatory, La Serena (Chile)
  8. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  9. Univ. College London, London (United Kingdom)
  10. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Space Telescope Science Institute, Baltimore, MD (United States)
  11. Argonne National Lab., Lemont, IL (United States)
  12. Carnegie Observatories, Pasadena, CA (United States)
  13. Univ. Pierre et Marie Curie, Paris (France)
  14. Stanford Univ., Stanford, CA (United States)
  15. Texas A & M Univ., College Station, TX (United States)
  16. Ludwig Maximilian Univ., Munich (Germany); Excellence Cluster Universe, Garching (Germany)
  17. Univ. of Michigan, Ann Arbor, MI (United States); Univ. Pierre et Marie Curie, Paris (France)
  18. Lab. Interinstitucional de e-Astronomia, Rio de Janeiro (Brazil)
  19. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Excellence Cluster Universe, Garching (Germany)
  20. Ludwig Maximilian Univ., Munich (Germany); Max Planck Institute for Extraterrestrial Physics, Garching (Germany)
  21. The Ohio State Univ., Columbus, OH (United States)
  22. Australian Astronomical Observatory, North Ryde (Australia)
  23. Univ. of Pennsylvania, Philadelphia, PA (United States)
  24. Univ. of Michigan, Ann Arbor, MI (United States)
  25. Univ. Autonoma de Barcelona, Bellaterra (Spain); Institucio Catalana de Recerca i Estudis Avancats, Barcelona (Spain)
  26. Centro de Investigaciones Energeticas, Madrid (Spain)
  27. Univ. of Michigan, Ann Arbor, MI (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  28. Univ. of Manchester, Manchester (United Kingdom)
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1201363
Alternate Identifier(s):
OSTI ID: 1226324
Report Number(s):
BNL-108183-2015-JA; FERMILAB-PUB-15-045-AE
Journal ID: ISSN 0035-8711; KA2301020
Grant/Contract Number:
SC00112704; AC02-07CH11359
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 449; Journal Issue: 1; Conference: Naples (Italy), 3-5 Jun 2014; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; galaxies: magellanic clouds; galaxies: stellar content; stars: statistics; stars:statistics; magellanic clouds

Citation Formats

Balbinot, Eduardo, Plazas, A., Santiago, B. X., Girardi, L., Pieres, A., da Costa, L. N., Maia, M. A. G., Gruendl, R. A., Walker, A. R., Yanny, B., Drlica-Wagner, A., Benoit-Levy, A., Abbott, T. M. C., Allam, S. S., Annis, J., Bernstein, J. P., Bernstein, R. A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Cunha, C. E., Depoy, D. L., Desai, S., Diehl, H. T., Doel, P., Estrada, J., Evrard, A. E., Fausti Neto, A., Finley, D. A., Flaugher, B., Frieman, J. A., Gruen, D., Honscheid, K., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Miller, C., Miquel, R., Ogando, R., Peoples, J., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., Wechsler, R., and Zuntz, J. The LMC geometry and outer stellar populations from early DES data. United States: N. p., 2015. Web. doi:10.1093/mnras/stv356.
Balbinot, Eduardo, Plazas, A., Santiago, B. X., Girardi, L., Pieres, A., da Costa, L. N., Maia, M. A. G., Gruendl, R. A., Walker, A. R., Yanny, B., Drlica-Wagner, A., Benoit-Levy, A., Abbott, T. M. C., Allam, S. S., Annis, J., Bernstein, J. P., Bernstein, R. A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Cunha, C. E., Depoy, D. L., Desai, S., Diehl, H. T., Doel, P., Estrada, J., Evrard, A. E., Fausti Neto, A., Finley, D. A., Flaugher, B., Frieman, J. A., Gruen, D., Honscheid, K., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Miller, C., Miquel, R., Ogando, R., Peoples, J., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., Wechsler, R., & Zuntz, J. The LMC geometry and outer stellar populations from early DES data. United States. doi:10.1093/mnras/stv356.
Balbinot, Eduardo, Plazas, A., Santiago, B. X., Girardi, L., Pieres, A., da Costa, L. N., Maia, M. A. G., Gruendl, R. A., Walker, A. R., Yanny, B., Drlica-Wagner, A., Benoit-Levy, A., Abbott, T. M. C., Allam, S. S., Annis, J., Bernstein, J. P., Bernstein, R. A., Bertin, E., Brooks, D., Buckley-Geer, E., Rosell, A. Carnero, Cunha, C. E., Depoy, D. L., Desai, S., Diehl, H. T., Doel, P., Estrada, J., Evrard, A. E., Fausti Neto, A., Finley, D. A., Flaugher, B., Frieman, J. A., Gruen, D., Honscheid, K., James, D., Kuehn, K., Kuropatkin, N., Lahav, O., March, M., Marshall, J. L., Miller, C., Miquel, R., Ogando, R., Peoples, J., Scarpine, V., Schubnell, M., Sevilla-Noarbe, I., Smith, R. C., Soares-Santos, M., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, D. L., Wechsler, R., and Zuntz, J. Fri . "The LMC geometry and outer stellar populations from early DES data". United States. doi:10.1093/mnras/stv356. https://www.osti.gov/servlets/purl/1201363.
@article{osti_1201363,
title = {The LMC geometry and outer stellar populations from early DES data},
author = {Balbinot, Eduardo and Plazas, A. and Santiago, B. X. and Girardi, L. and Pieres, A. and da Costa, L. N. and Maia, M. A. G. and Gruendl, R. A. and Walker, A. R. and Yanny, B. and Drlica-Wagner, A. and Benoit-Levy, A. and Abbott, T. M. C. and Allam, S. S. and Annis, J. and Bernstein, J. P. and Bernstein, R. A. and Bertin, E. and Brooks, D. and Buckley-Geer, E. and Rosell, A. Carnero and Cunha, C. E. and Depoy, D. L. and Desai, S. and Diehl, H. T. and Doel, P. and Estrada, J. and Evrard, A. E. and Fausti Neto, A. and Finley, D. A. and Flaugher, B. and Frieman, J. A. and Gruen, D. and Honscheid, K. and James, D. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and March, M. and Marshall, J. L. and Miller, C. and Miquel, R. and Ogando, R. and Peoples, J. and Scarpine, V. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, R. C. and Soares-Santos, M. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Tucker, D. L. and Wechsler, R. and Zuntz, J.},
abstractNote = {The Dark Energy Camera has captured a large set of images as part of Science Verification (SV) for the Dark Energy Survey. The SV footprint covers a large portion of the outer Large Magellanic Cloud (LMC), providing photometry 1.5 magnitudes fainter than the main sequence turn-off of the oldest LMC stellar population. We derive geometrical and structural parameters for various stellar populations in the LMC disc. For the distribution of all LMC stars, we find an inclination of i = –38.14°±0.08° (near side in the North) and a position angle for the line of nodes of θ₀ = 129.51°±0.17°. We find that stars younger than ~4 Gyr are more centrally concentrated than older stars. Fitting a projected exponential disc shows that the scale radius of the old populations is R>4Gyr = 1.41 ± 0.01 kpc, while the younger population has R<4Gyr = 0.72 ± 0.01 kpc. However, the spatial distribution of the younger population deviates significantly from the projected exponential disc model. The distribution of old stars suggests a large truncation radius of Rt = 13.5 ± 0.8 kpc. If this truncation is dominated by the tidal field of the Galaxy, we find that the LMC is ≃24+9–6 times less massive than the encircled Galactic mass. By measuring the Red Clump peak magnitude and comparing with the best-fit LMC disc model, we find that the LMC disc is warped and thicker in the outer regions north of the LMC centre. As a result, our findings may either be interpreted as a warped and flared disc in the LMC outskirts, or as evidence of a spheroidal halo component.},
doi = {10.1093/mnras/stv356},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 1,
volume = 449,
place = {United States},
year = {Fri Mar 20 00:00:00 EDT 2015},
month = {Fri Mar 20 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share: