skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Time-Periodic Solutions of Driven-Damped Trimer Granular Crystals

Journal Article · · Mathematical Problems in Engineering
DOI:https://doi.org/10.1155/2015/830978· OSTI ID:1198644
 [1];  [2];  [3];  [2];  [4]
  1. School of Civil Engineering, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece, Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, USA
  2. Aeronautics & Astronautics, University of Washington, Seattle, WA 98195-2400, USA
  3. Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, USA, Department of Mechanical and Process Engineering (D-MAVT), Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
  4. Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, USA, Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA

In this work, we consider time-periodic structures of granular crystals consisting of alternate chrome steel (S) and tungsten carbide (W) spherical particles where each unit cell follows the pattern of a 2:1 trimer: S-W-S. The configuration at the left boundary is driven by a harmonic in-time actuation with given amplitude and frequency while the right one is a fixed wall. Similar to the case of a dimer chain, the combination of dissipation, driving of the boundary, and intrinsic nonlinearity leads to complex dynamics. For fixed driving frequencies in each of the spectral gaps, we find that the nonlinear surface modes and the states dictated by the linear drive collide in a saddle-node bifurcation as the driving amplitude is increased, beyond which the dynamics of the system becomes chaotic. While the bifurcation structure is similar for solutions within the first and second gap, those in the first gap appear to be less robust. We also conduct a continuation in driving frequency, where it is apparent that the nonlinearity of the system results in a complex bifurcation diagram, involving an intricate set of loops of branches, especially within the spectral gap. The theoretical findings are qualitatively corroborated by the experimental full-field visualization of the time-periodic structures.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE
Grant/Contract Number:
IRSES-606096; CMMI1000337; DMS1312856; FA9550-12-1-0332; CMMI1414748; N000141410388; ESC-A 06-14; AC52-06NA25396
OSTI ID:
1198644
Alternate ID(s):
OSTI ID: 1233184
Report Number(s):
LA-UR-14-28454; PII: 830978; 830978
Journal Information:
Mathematical Problems in Engineering, Journal Name: Mathematical Problems in Engineering Vol. 2015; ISSN 1024-123X
Publisher:
Hindawi Publishing CorporationCopyright Statement
Country of Publication:
Egypt
Language:
English
Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Similar Records

Nonlinear resonances and antiresonances of a forced sonic vacuum
Journal Article · Wed Dec 23 00:00:00 EST 2015 · Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics · OSTI ID:1198644

Models and Stability Analysis of Boiling Water Reactors
Technical Report · Mon Apr 15 00:00:00 EDT 2002 · OSTI ID:1198644

Breathers in a locally resonant granular chain with precompression
Journal Article · Thu Sep 01 00:00:00 EDT 2016 · Physica. D, Nonlinear Phenomena · OSTI ID:1198644