skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on Fe3O4 by Materials Project

Abstract

Fe3O4 is Spinel-derived structured and crystallizes in the trigonal R-3m space group. The structure is three-dimensional. there are three inequivalent Fe+2.67+ sites. In the first Fe+2.67+ site, Fe+2.67+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six equivalent FeO4 tetrahedra and edges with six FeO6 octahedra. There are two shorter (2.08 Å) and four longer (2.11 Å) Fe–O bond lengths. In the second Fe+2.67+ site, Fe+2.67+ is bonded to six equivalent O2- atoms to form FeO6 octahedra that share corners with six equivalent FeO4 tetrahedra and edges with six equivalent FeO6 octahedra. All Fe–O bond lengths are 2.06 Å. In the third Fe+2.67+ site, Fe+2.67+ is bonded to four O2- atoms to form corner-sharing FeO4 tetrahedra. The corner-sharing octahedra tilt angles range from 54–57°. All Fe–O bond lengths are 1.92 Å. There are two inequivalent O2- sites. In the first O2- site, O2- is bonded in a rectangular see-saw-like geometry to four Fe+2.67+ atoms. In the second O2- site, O2- is bonded in a distorted rectangular see-saw-like geometry to four Fe+2.67+ atoms.

Authors:
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
MIT; UC Berkeley; Duke; U Louvain
OSTI Identifier:
1194194
Report Number(s):
mp-19306
DOE Contract Number:  
AC02-05CH11231; EDCBEE
Resource Type:
Data
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; crystal structure; Fe3O4; Fe-O

Citation Formats

The Materials Project. Materials Data on Fe3O4 by Materials Project. United States: N. p., 2020. Web. doi:10.17188/1194194.
The Materials Project. Materials Data on Fe3O4 by Materials Project. United States. https://doi.org/10.17188/1194194
The Materials Project. 2020. "Materials Data on Fe3O4 by Materials Project". United States. https://doi.org/10.17188/1194194. https://www.osti.gov/servlets/purl/1194194.
@article{osti_1194194,
title = {Materials Data on Fe3O4 by Materials Project},
author = {The Materials Project},
abstractNote = {Fe3O4 is Spinel-derived structured and crystallizes in the trigonal R-3m space group. The structure is three-dimensional. there are three inequivalent Fe+2.67+ sites. In the first Fe+2.67+ site, Fe+2.67+ is bonded to six O2- atoms to form FeO6 octahedra that share corners with six equivalent FeO4 tetrahedra and edges with six FeO6 octahedra. There are two shorter (2.08 Å) and four longer (2.11 Å) Fe–O bond lengths. In the second Fe+2.67+ site, Fe+2.67+ is bonded to six equivalent O2- atoms to form FeO6 octahedra that share corners with six equivalent FeO4 tetrahedra and edges with six equivalent FeO6 octahedra. All Fe–O bond lengths are 2.06 Å. In the third Fe+2.67+ site, Fe+2.67+ is bonded to four O2- atoms to form corner-sharing FeO4 tetrahedra. The corner-sharing octahedra tilt angles range from 54–57°. All Fe–O bond lengths are 1.92 Å. There are two inequivalent O2- sites. In the first O2- site, O2- is bonded in a rectangular see-saw-like geometry to four Fe+2.67+ atoms. In the second O2- site, O2- is bonded in a distorted rectangular see-saw-like geometry to four Fe+2.67+ atoms.},
doi = {10.17188/1194194},
url = {https://www.osti.gov/biblio/1194194}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Wed Jul 15 00:00:00 EDT 2020},
month = {Wed Jul 15 00:00:00 EDT 2020}
}