skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials Data on SiO2 by Materials Project

Dataset ·
DOI:https://doi.org/10.17188/1191016· OSTI ID:1191016

SiO2 is Keatite-like structured and crystallizes in the orthorhombic Pnnm space group. The structure is three-dimensional. there are five inequivalent Si4+ sites. In the first Si4+ site, Si4+ is bonded to four O2- atoms to form corner-sharing SiO4 tetrahedra. There is three shorter (1.62 Å) and one longer (1.63 Å) Si–O bond length. In the second Si4+ site, Si4+ is bonded to four O2- atoms to form corner-sharing SiO4 tetrahedra. There is two shorter (1.62 Å) and two longer (1.63 Å) Si–O bond length. In the third Si4+ site, Si4+ is bonded to four O2- atoms to form corner-sharing SiO4 tetrahedra. There is one shorter (1.61 Å) and three longer (1.62 Å) Si–O bond length. In the fourth Si4+ site, Si4+ is bonded to four O2- atoms to form corner-sharing SiO4 tetrahedra. There is three shorter (1.62 Å) and one longer (1.63 Å) Si–O bond length. In the fifth Si4+ site, Si4+ is bonded to four O2- atoms to form corner-sharing SiO4 tetrahedra. There is three shorter (1.62 Å) and one longer (1.63 Å) Si–O bond length. There are ten inequivalent O2- sites. In the first O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the second O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the third O2- site, O2- is bonded in a linear geometry to two equivalent Si4+ atoms. In the fourth O2- site, O2- is bonded in a linear geometry to two Si4+ atoms. In the fifth O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the sixth O2- site, O2- is bonded in a bent 150 degrees geometry to two equivalent Si4+ atoms. In the seventh O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the eighth O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the ninth O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms. In the tenth O2- site, O2- is bonded in a bent 150 degrees geometry to two Si4+ atoms.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). LBNL Materials Project
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Organization:
MIT; UC Berkeley; Duke; U Louvain
DOE Contract Number:
AC02-05CH11231; EDCBEE
OSTI ID:
1191016
Report Number(s):
mp-15078
Resource Relation:
Related Information: https://materialsproject.org/citing
Country of Publication:
United States
Language:
English

Similar Records

Materials Data on SiO2 by Materials Project
Dataset · Wed Apr 29 00:00:00 EDT 2020 · OSTI ID:1191016

Materials Data on SiO2 by Materials Project
Dataset · Thu Apr 30 00:00:00 EDT 2020 · OSTI ID:1191016

Materials Data on SiO2 by Materials Project
Dataset · Fri May 29 00:00:00 EDT 2020 · OSTI ID:1191016