skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bench-scale electrokinetic remediation for cesium-contaminated sediment at the Hanford Site, USA

Journal Article · · Journal of Radioanalytical and Nuclear Chemistry, 304(2):615-625

Electrokinetic (EK) remediation has been applied to extract various contaminants such as radionuclides, heavy metals, and organic compounds from contaminated sediment and soil using electric currents. We conducted a laboratory experiment to investigate the efficiency of EK remediation method for Hanford sediment (76% sand and 24% silt-clay) after artificial contamination with nonradioactive 133Cs (0.01 M CsNO3) as a surrogate for radioactive 137Cs. The initial 133Cs concentration in the bulk sediment was 668 mg kg-1, with a higher 133Cs concentration for the silt-clay fraction (867 mg kg-1) than for the sand fraction (83 mg kg-1). A significant removal of cationic 133Cs from the sediment occurred from the cathode side (-), whereas the removal was negligible from the anode side (+) during the EK remediation process for 68 days. Based on microwave-assisted total digestion, 312 mg kg-1 of 133Cs was removed from the bulk sediment, which corresponds to the removal efficiency of 47%. The EK method was significantly more efficient for the silt-clay fraction than for the sand fraction. X-ray diffraction (XRD) and scanning electron microscopy-electron dispersive spectroscopy (SEM-EDS) analyses indicate that change in major crystalline mineral phases was insignificant during the EK remediation and the removal of 133Cs from the Hanford sediment by the EK method is attributed mainly to cation exchange with K in clay minerals. The experimental results suggest that the EK method can effectively remove radioactive Cs from the surface or subsurface sediment contaminated by radioactive materials in the Hanford Site, Washington, USA.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
1188880
Report Number(s):
PNNL-SA-106438; 600301020
Journal Information:
Journal of Radioanalytical and Nuclear Chemistry, 304(2):615-625, Journal Name: Journal of Radioanalytical and Nuclear Chemistry, 304(2):615-625
Country of Publication:
United States
Language:
English