skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Small UAS Propulsion Needs and Opportunties

  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center (FEERC); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). National Transportation Research Center (NTRC)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
DOE Contract Number:
Resource Type:
Resource Relation:
Conference: Unmanned Systems 2015, Atlanta, GA, USA, 20150503, 20150408
Country of Publication:
United States

Citation Formats

Kass, Michael D. Small UAS Propulsion Needs and Opportunties. United States: N. p., 2015. Web.
Kass, Michael D. Small UAS Propulsion Needs and Opportunties. United States.
Kass, Michael D. 2015. "Small UAS Propulsion Needs and Opportunties". United States. doi:.
title = {Small UAS Propulsion Needs and Opportunties},
author = {Kass, Michael D},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2015,
month = 1

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to bemore » considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.« less
  • The interest in a return trip for humans to the moon and a pioneering voyage to Mars has rekindled interest in the use of nuclear reactors to provide propulsion for both piloted and robotic space vehicles. Two types of nuclear reactor-based propulsion systems are currently envisioned: nuclear thermal propulsion (NTP) and nuclear electric propulsion (NEP). The former relies on the direct heating and exhaust of a propellant within the core of the reactor, while the latter utilizes ion thruster engines for propulsion, and the nuclear reactor supplies the large amount of electrical power required to drive the engines. Another directmore » contrast between the NTP and NEP concepts is the length of reactor operation. The NTP nuclear rocket core is required to produce large amounts of thermal power for relatively short bursts (on the order of minutes to hours), and the NEP reactor core operates for a much longer period of time (on the order of days to months) with a steady-state electrical power output. The design of these types of nuclear reactor systems requires the use of specific analysis tools, some of which already exist and others that need considerable development. The general areas in which design tools are needed in the development of systems for space nuclear propulsion include the following: (1) neutronics design - both steady-state and transient applications including thermal feedback effects; (2) thermal-hydraulics design - again, both steady-state and transient applications with coupling to and from the neutronics design codes; (3) materials analysis tools - due to the high temperatures and high stresses required for efficient propulsion operation, increased importance will be placed on understanding the material responses; and (4) systems analysis - these codes allow optimizaiton of the entire propulsion system.« less
  • Nuclear power enables or significantly enhances a variety of space missions whether near-Earth, or for solar system exploration, lunar-Mars exploration and recovery of near-Earth resources. Performance optimizations for individual missions leads to a large number of power and propulsion systems to be developed. However, the realities of the budget and schedules indicates that the number of nuclear systems that will be developed are limited. One needs to seek the ``minimum requirements`` to do a job rather than the last ounce of performance, and areas of commonality. To develop a minimum number of systems to meet the overall DoD, NASA, andmore » commercial needs, the broad spectrum of requirements has been examined along with cost drivers.« less
  • No abstract available.
  • The use of microwave and millimeter wave beamed energy for propulsion of vehicles in the atmosphere and in space has been under study for at least 35 years. The need for improved propulsion technology is clear: chemical rockets orbit only a few percent of the liftoff mass at a cost of over $3,000/lb. The key advantage of the beamed power approach is to place the heavy and expensive components on the ground or in space, not in the vehicle. This paper, following upon the high power laser propulsion programs, uses a multi-cycle propulsion engine in which the first phase ofmore » ascent is based on the air breathing ramjet principle, a repetitive Pulsed Detonation Engine (PDE) which uses a microwave-supported detonation to heat the air working fluid, i.e., propellant. The second phase is a pure beam-heated rocket. The key factor is that high peak power is essential to this pulsed engine. This paper explores this propulsion concept using millimeter waves, the most advantageous part of the spectrum. The authors find that efficient system concepts can be developed for the beam powered launch system and that, while the capital cost may be as high as the earlier orbital transfer concepts, the operating cost is much lower. The vehicle can have payload-to-mass ratios on the order of one and cost (per pound to orbit) two orders of magnitudes less than for chemical rockets. This allows the weight of microwave powered vehicles to be very small, as low as {approximately}100 kg for test devices.« less