skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dependence on Crystal Size of the Nanoscale Chemical Phase Distribution and Fracture in Li x FePO 4

Journal Article · · Nano Letters
 [1];  [2];  [3];  [3];  [4];  [3];  [3];  [3];  [3];  [5];  [3];  [3];  [6];  [7];  [3];  [4];  [8];  [2]
  1. Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States, Department of NanoEngineering, University of California, San Diego, La Jolla, California 92121, United States, Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
  2. Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
  3. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
  4. Department of NanoEngineering, University of California, San Diego, La Jolla, California 92121, United States
  5. Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
  6. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
  7. Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom, Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
  8. Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

The performance of battery electrode materials is strongly affected by inefficiencies in utilization kinetics and cycle life as well as size effects. Observations of phase transformations in these materials with high chemical and spatial resolution can elucidate the relationship between chemical processes and mechanical degradation. Soft X-ray ptychographic microscopy combined with X-ray absorption spectroscopy and electron microscopy creates a powerful suite of tools that we use to assess the chemical and morphological changes in lithium iron phosphate (LiFePO4) micro- and nanocrystals that occur upon delithiation. All sizes of partly delithiated crystals were found to contain two phases with a complex correlation between crystallographic orientation and phase distribution. However, the lattice mismatch between LiFePO4 and FePO4 led to severe fracturing on microcrystals, whereas no mechanical damage was observed in nanoplates, indicating that mechanics are a principal driver in the outstanding electrode performance of LiFePO4 nanoparticles. These results demonstrate the importance of engineering the active electrode material in next generation electrical energy storage systems, which will achieve theoretical limits of energy density and extended stability. This work establishes soft X-ray ptychographic chemical imaging as an essential tool to build comprehensive relationships between mechanics and chemistry that guide this engineering design.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Energy Frontier Research Centers (EFRC) (United States). Northeastern Center for Chemical Energy Storage (NECCES)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Grant/Contract Number:
AC02-05CH11231; SC0012583; SC0001294
OSTI ID:
1185242
Alternate ID(s):
OSTI ID: 1524031
Journal Information:
Nano Letters, Journal Name: Nano Letters Vol. 15 Journal Issue: 7; ISSN 1530-6984
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 86 works
Citation information provided by
Web of Science

Figures / Tables (6)