skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sasse Modeling of First Cycle Neptunium (VI) Recovery Flowsheet

Abstract

A flowsheet has been proposed to separate neptunium from solutions in H-Canyon Tanks 16.4, 12.5, and 11.7 in the First Cycle solvent extraction banks, in which cerium(IV) (Ce(IV)) serves as an agent to oxidize neptunium to neptunium(VI) (Np(VI)). A SASSE (Spreadsheet Algorithm for Stagewise Solvent Extraction) spreadsheet model indicates that the proposed flowsheet is a feasible method for separating neptunium and uranium from sulfates, thorium, and other metal impurities. The proposed flowsheet calls for stripping the sulfates, thorium, and other metal impurities into the 1AW stream and extracting and then stripping the neptunium and uranium into the 1BP stream. SASSE predicts that separation of thorium from the other actinides can be accomplished with actinide losses of 0.01% or less. It is assumed that other metal impurities such as iron, aluminum, and fission products will follow the thorium into 1AW. Due to an organic/aqueous distribution coefficient that is close to one, SASSE predicts that plutonium(VI) (Pu(VI)) is split between the A Bank and B Bank aqueous output streams, with 27% going to 1AW and 73% going to 1BP. An extrapolated distribution coefficient based on unvalidated Ce(IV) distribution measurements at a single nitrate concentration and a comparison with thorium(IV) (Th(IV)) distributions indicatesmore » that Ce(IV) could reflux in 1B Bank. If the Ce(IV) distribution coefficient is lower than would be predicted by this single point extrapolation, but still higher than the distribution coefficient for Th(IV), then Ce(IV) would follow Np(VI) and uranium(VI) (U(VI)) into 1BP. The SASSE model was validated using data from a 1964 oxidizing flowsheet for the recovery of Np(VI) in Second Cycle. For the proposed flowsheet to be effective in recovering neptunium, the addition of approximately 0.025 M ceric ammonium nitrate (Ce(NH 4) 2(NO 3) 6) to both the 1AF and 1AS streams is required to stabilize the neptunium in the +6 oxidation state. The cerium added to 1AF and 1AS must remain in the +4 oxidation state to stabilize Np(VI).« less

Authors:
 [1]
  1. Savannah River Site (SRS), Aiken, SC (United States)
Publication Date:
Research Org.:
Savannah River Site (SRS), Aiken, SC (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1183724
Report Number(s):
WSRC-TR-2006-00104
DOE Contract Number:  
AC09-08SR22470
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English

Citation Formats

Laurinat, J. E.. Sasse Modeling of First Cycle Neptunium (VI) Recovery Flowsheet. United States: N. p., 2006. Web. doi:10.2172/1183724.
Laurinat, J. E.. Sasse Modeling of First Cycle Neptunium (VI) Recovery Flowsheet. United States. doi:10.2172/1183724.
Laurinat, J. E.. Sat . "Sasse Modeling of First Cycle Neptunium (VI) Recovery Flowsheet". United States. doi:10.2172/1183724. https://www.osti.gov/servlets/purl/1183724.
@article{osti_1183724,
title = {Sasse Modeling of First Cycle Neptunium (VI) Recovery Flowsheet},
author = {Laurinat, J. E.},
abstractNote = {A flowsheet has been proposed to separate neptunium from solutions in H-Canyon Tanks 16.4, 12.5, and 11.7 in the First Cycle solvent extraction banks, in which cerium(IV) (Ce(IV)) serves as an agent to oxidize neptunium to neptunium(VI) (Np(VI)). A SASSE (Spreadsheet Algorithm for Stagewise Solvent Extraction) spreadsheet model indicates that the proposed flowsheet is a feasible method for separating neptunium and uranium from sulfates, thorium, and other metal impurities. The proposed flowsheet calls for stripping the sulfates, thorium, and other metal impurities into the 1AW stream and extracting and then stripping the neptunium and uranium into the 1BP stream. SASSE predicts that separation of thorium from the other actinides can be accomplished with actinide losses of 0.01% or less. It is assumed that other metal impurities such as iron, aluminum, and fission products will follow the thorium into 1AW. Due to an organic/aqueous distribution coefficient that is close to one, SASSE predicts that plutonium(VI) (Pu(VI)) is split between the A Bank and B Bank aqueous output streams, with 27% going to 1AW and 73% going to 1BP. An extrapolated distribution coefficient based on unvalidated Ce(IV) distribution measurements at a single nitrate concentration and a comparison with thorium(IV) (Th(IV)) distributions indicates that Ce(IV) could reflux in 1B Bank. If the Ce(IV) distribution coefficient is lower than would be predicted by this single point extrapolation, but still higher than the distribution coefficient for Th(IV), then Ce(IV) would follow Np(VI) and uranium(VI) (U(VI)) into 1BP. The SASSE model was validated using data from a 1964 oxidizing flowsheet for the recovery of Np(VI) in Second Cycle. For the proposed flowsheet to be effective in recovering neptunium, the addition of approximately 0.025 M ceric ammonium nitrate (Ce(NH4)2(NO3)6) to both the 1AF and 1AS streams is required to stabilize the neptunium in the +6 oxidation state. The cerium added to 1AF and 1AS must remain in the +4 oxidation state to stabilize Np(VI).},
doi = {10.2172/1183724},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Apr 01 00:00:00 EST 2006},
month = {Sat Apr 01 00:00:00 EST 2006}
}

Technical Report:

Save / Share: